Regulatory
RhI

Part:BBa_I14017:Experience

Designed by: Vikram Vijayan, Allen Hsu, Lawrence Fomundam   Group: Antiquity   (2004-08-02)
Revision as of 15:46, 23 October 2014 by Sumana (Talk | contribs) (Modeling crosstalk)

This experience page is provided so that any user may enter their experience using this part.
Please enter how you used this part and how it worked out.

Applications of BBa_I14017

User Reviews

UNIQa011dd1fe0ccc13a-partinfo-00000000-QINU


••••

ETH Zurich 2014

Characterization of two-order crosstalk on the promoter

Background information

System considered

Modeling crosstalk

Each experimental data set was fitted to an Hill function using the Least Absolute Residual method.

ETHZ HillEq.png

The fitting of the graphs was performed using the following equation :

rFluo = the relative fluorescence (absolute measured fluorescence value over OD)[au]
a = basal expression rate [au](“leakiness”)
b = maximum expression rate [au]("full induction")
n = Hill coefficient (“cooperativity”)
Km = Half-maximal effective concentration (“sensitivity”)
[AHL]=OHHL concentration [nM]


First-order crosstalk

First Level crosstalk: RhlR binds to different HSL and activates the promoter

ETH Zurich 1crosstalkPrhl.png

Second Level crosstalk: other regulatory proteins, like LuxR, bind to their natural HSL substrate and activates the promoter

ETH Zurich 2crosstalkPrhl.png

Second order crosstalk: Combination of both cross-talk levels

Other regulatory proteins, like LuxR, bind to different HSL and activates the promoter.

Results

Table 1 Crosstalk matrix for the promoter prhl (BBa_I14017)

In this set of experiments the promoter pRhl was tested for potential crosstalk. In the top left position we observe the induction of pRhl by C4-HSL bound to the regulator RhlR. The switching behaviour was observed at a C4-HSL concentration of 1 μM. In the case of 3OC12-HSL binding the RhlR regulator and subsequently the promoter pRhlinsignificant crosstalk has been observed. Severe crosstalk was observed in the case of 3OC6-HSL binding the RhlR regulator followed by induction of pRhl. The transition occurred at a concentration of the inducer molecule of 1 μM but compared to the reference curve a lower value of fluorescence per OD was observed (1000 a.u.). Another case of crosstalk with the pRhl was detected with 3OC12-HSL binding to the corresponding LasR regulator followed by inducing the promoter pRhl. Here switching occurred at a concentration 1 nM of 3OC12-HSL and reached fluorescence per OD of 750 a.u.. This is approximately 0.5 fold the value of the fluorescence per OD shown by the reference curve indicated in green.

ETH Zurich 2014 qs-table CornerRhl.png ETH Zurich 2014 qs-table C4-HSL.png ETH Zurich 2014 qs-table 3OC6-HSL.png ETH Zurich 2014 qs-table 3OC12-HSL.png
ETH Zurich 2014 qs-table RhlR.png ETH Zurich 2014 qs-table PrhlRef.png ETH Zurich 2014 qs-table PrhlRhlRLuxAHL.png ETH Zurich 2014 qs-table PrhlRhlRLasAHL.png
ETH Zurich 2014 qs-table LuxR.png ETH Zurich 2014 qs-table PrhlLuxRRhlAHL.png ETH Zurich 2014 qs-table PrhlLuxRLuxAHL.png ETH Zurich 2014 qs-table PrhlLuxRLasAHL.png
ETH Zurich 2014 qs-table LasR.png ETH Zurich 2014 qs-table PrhlLasRRhlAHL.png ETH Zurich 2014 qs-table PrhlLasRLuxAHL.png ETH Zurich 2014 qs-table PrhlLasRLasAHL.png



Antiquity

This review comes from the old result system and indicates that this part did not work in some test.

UNIQa011dd1fe0ccc13a-partinfo-00000003-QINU