Promoters
Catalog: Are you looking for a promoter to use? The registry has a collection of bacterial, phage, eukaryotic, and viral promoters. | Design: Are you interested in designing a new promoter or promoter family? Here are some guidelines to help you design and document new promoters. | Help: A glossary, and further reading on promoters. |
A promoter is a DNA sequence that can recruit transcriptional machinery and lead to transcription of the downstream DNA sequence. The specific sequence of the promoter determines the strength of the promoter (a strong promoter leads to a high rate of transcription initiation).
In addition to sequences that "promote" transcription, a promoter may include additional sequences known as operators that control the strength of the promoter. For example, a promoter may include a binding site for a protein that attracts or obstructs the RNAP binding to the promoter. The presence or absence of the protein will affect the strength of the promoter. Such a promoter is known as a regulated promoter.
The Registry has a large collection of promoters both unregulated and regulated. Most of our promoters are designed to be recognized by E. coli RNA polymerase but we also have several promtoers that are recognized by T7 RNA polymerase and other RNA polymerase holoenzymes.
An input/output description of promoter function
Sometimes, it is appropriate to ignore the mechanistic details of how a promoter works and think of a promoter as a device that converts some set of inputs into some set of outputs. Such an approach may be appropriate when designing a multi-component system that includes promoters whose activity must be regulated by other species in the system. A promoter can be thought of as a device that outputs a certain number of transcribing RNA polymerases per unit time. In that sense, a promoter might be thought of as a "source" or "generator" of transcriptional activity. Promoters can have different numbers of inputs. A constitutive promoter has no inputs. Technically, even a constitutive promoter has inputs, such as the level of free RNA polymerase, but we often assume that levels of free RNA polymerase are either unchanging, or are changing but are never the limiting factor in transcription initiation. The level of a repressor protein than negatively regulates a promoter might be considered an input to a promoter.
References
<biblio>
- pribnow pmid=1093168
- harley pmid=3550697
- lisser1 pmid=8479900
- lisser2 pmid=8055959
</biblio>