Not Released
Experience: Works
Not Used
Get This Part
Regulatory

Part:BBa_K1045011:Experience

Designed by: iGEM Team Göttingen 2013   Group: iGEM13_Goettingen   (2013-09-20)
Revision as of 13:41, 19 October 2013 by Kati (Talk | contribs) (→‎Plate reader data)


This experience page is provided so that any user may enter their experience using this part.
Please enter how you used this part and how it worked out.

Applications of BBa_K1045011

We used this part in our DarR reporter system BBa_K1045017. BBa_K1045011 was functional as our characterization experiments of BBa_K1045017 suggested. The experiments are described in the following sections:

Microscope data

BBa_K1045017 consists of two expression units. One expression unit serves to express the transcriptional repressor DarR, the other one drives expression of gfp. The gfp expression unit harbors a strong promoter and the DarR binding sequence. Hence, when DarR binds this sequence, gfp expression is supposed to be prevented. For the expression of DarR, the promoter BBa_K1045011 was used. In the experiment shown below, BL21 E. coli cells either transformed with the DarR reporter system or with BBa_K1045013 as a control vector (gfp expression unit only) were grown in the absence of c-di-AMP. Fluorescence microscopy revealed that the cells of the control strain were bright green indicating that GFP is expressed. When DarR was present in the vector, however, the E. coli cells were barely fluoresceing. This suggests, that DarR is expressed from the promoter BBa_K1045011 in BBa_K1045017 and that it is functional though additional upstream basepairs were added to this part.

In conclusion, the part BBa_K1045011 is proven to be active. The fact that DarR is shutting down the gfp expression even in the absence of c-di-AMP (For further information and discussions, please visit here), implies a very high binding activity of DarR to the operator sequence.

Fig. 1.: Top: E. coli transformed with a control plasmid encoding BBa_K1045013. Bottom: E. coli transformed with a plasmid harboring the DarR reporter system BBa_K1045017. Cells of both strains were cultured without c-di-AMP and analyzed by fluorescence microscopy. Both pictures represent merges of a bright field image and a GFP fluorescence image. The exposure time used to record GFP fluorescence was in both cases 2 seconds. +DarR.jpg

Plate reader data

We furthermore produced quantitative data characterizing the growth and the fluorescence over time of the BL21 E. colis we transformed with the DarR reporter system construct BBa_K1045017. As a control, we used E. coli cells harboring the BBa_K1045013 plasmid. The following graphs show the results of the plate reader experiments performed to quantify the strength of the DarR construct in E. coli. Shown are growth curves measured at the wavelength 600 nm for the cell density (Fig. 2) and 509 nm for the GFP (Fig. 3), which is encoded in the construct. For each measurement, three technical and two biological replicates were done. The graphs show the mean value of the technical replicates and one of the biological replicates. As written in the legend, a dilution series of c-di-AMP was used to test the reaction of the DarR reporter system to the nucleotide. Experimental setup: total time 21 h; 15 min measurement interval; 37°C, medium shaking; 96-well titer plate; Synergy Mx Monochromator-Based Multi-Mode Microplate Reader; Gen5 V2.01

Fig. 2: Top: Growth curve of the E. coli cells carrying the DarR reporter system BBa_K1045017; Bottom: Growth curve of E. coli cells transformed with the control plasmid BBa_K1045013. The cells were cultured with c-di-AMP in different concentrations or without c-di-AMP. The growth was measured via the OD at 600 nm in a plate reader. Please enlarge the pictures for better reading (click on them).GFP Control Growth cdiAMP.png
Fig. 2: Top: Fluorescence curve of the E. coli cells with the DarR reporter system BBa_K1045017; Bottom: Fluorescence curve of E. coli cells transformed with the control plasmid BBa_K1045013. The cells were cultured with c-di-AMP in different concentrations or without c-di-AMP. The fluorescence was measured at 509 nm in a plate reader. Please enlarge the pictures for better reading (click on them).GFP Control Fluorescence cdiAMP.png



As in the microscope experiments described above, the expression of the reporter was prevented (even without c-di-AMP), when DarR was encoded in the vector. Hence, DarR seemed to be expressed via the regulatory part BBa_K1045011 indicating that the promoter is active.

User Reviews

UNIQ6134a87ba5c4febb-partinfo-00000000-QINU UNIQ6134a87ba5c4febb-partinfo-00000001-QINU