Part:BBa_K516214:Experience
This experience page is provided so that any user may enter their experience using this part.
Please enter
how you used this part and how it worked out.
Applications of BBa_K516214
User Reviews
UNIQ3f9d2a91dca59733-partinfo-00000000-QINU UNIQ3f9d2a91dca59733-partinfo-00000001-QINU
UNIQ3f9d2a91dca59733-partinfo-00000002-QINU
•••••
UNIPV-Pavia iGEM 2011 |
NB: unless differently specified, all tests were performed in E. coli MGZ1 in M9 supplemented medium at 37°C in low copy plasmid pSB4C5.
Characterized with:
Though these parts don't have a transcriptional terminator, they have been characterized in low copy plasmid pSB4C5, that contains the BBa_B0054 terminator. This choice is motivated by the need to reproduce the exact experimental context of the final circuit, as described in solution section. LuxI has been characterized in terms of enzymatic activity under the regulation of pTet promoter. KM,LuxI and Vmax parameters representing its activity have been estimated and the promoter strength (represented by a synthetic parameter αpTet for every pTet-RBS combination) at full induction (100 ng/ml) has been estimated too with a simultaneous fitting of the available data. LuxI has been characterized through the Biosensor BBa_T9002 (see modelling section). The HSL synthesis rate has been evaluated according to the model equations, properly adjusted. The parameters Vmax, kM,LuxI and αRBSx were estimated with a simultaneous fitting of the data collected as described in measurement section for the four measurement parts pTet-RBSx-LuxI-TT assayed by BBa_T9002 biosensor section. The estimated parameters for the enzymatic activity of LuxI are reported in the table below:
The collected data have been used to identify the parameters of our model. Despite the data-poor context, the model predictions fit the experimental data, thus demonstrating that the equation that models the HSL synthesis by LuxI is a good approximation of real processes. |
UNIQ3f9d2a91dca59733-partinfo-00000005-QINU