Difference between revisions of "Part:BBa K404113"

Line 4: Line 4:
 
[[Image:Freiburg10_VectorplasmidBricks 10.png|thumb|center|480px]]<br>
 
[[Image:Freiburg10_VectorplasmidBricks 10.png|thumb|center|480px]]<br>
  
<h3>Tymidine kinase BBa_K404109</h3>
+
<h3>Tymidine kinase </h3>(BBa_K404109)<br>
 
'''Thymidine kinase (TK)''' (EC 2.7.1.21) is known to be involved in the salvage pathway of nucleosides to nucleotides (Andrei et al. 2005).  
 
'''Thymidine kinase (TK)''' (EC 2.7.1.21) is known to be involved in the salvage pathway of nucleosides to nucleotides (Andrei et al. 2005).  
 
Due to its broader spectrum for different substrates, herpes simplex virus thymidine kinase (HSV-TK) is widely used in gene therapy approaches instead of endogenous thymidine kinases (Black et al. 1996). The transgenic introduced HSV-TK monophosphrylates nucleosides or nucleoside analogs such as ganciclovir (GCV) or acyclovir (AVC) followed by further phosphorylation through cellular kinases to nucleoside triphsphosphates. Incorporation of nucleotide analogs such as ganciclovir triphosphate or acyclovir triphosphates leads to DNA chain termination (Reardon 1989) and finally results in cell death.  
 
Due to its broader spectrum for different substrates, herpes simplex virus thymidine kinase (HSV-TK) is widely used in gene therapy approaches instead of endogenous thymidine kinases (Black et al. 1996). The transgenic introduced HSV-TK monophosphrylates nucleosides or nucleoside analogs such as ganciclovir (GCV) or acyclovir (AVC) followed by further phosphorylation through cellular kinases to nucleoside triphsphosphates. Incorporation of nucleotide analogs such as ganciclovir triphosphate or acyclovir triphosphates leads to DNA chain termination (Reardon 1989) and finally results in cell death.  
 
Genetic modifications of the active site represented by a tripeptide motif in thymidine kinase increases the substrate affinity of HSV-TK towards GCV and ACV (Black et al. 1996). Two promising mutant HSV-TKs have been found by large mutagenesis screenings modifying several amino acids and conducting sensitivity assays for ganciclovir and acyclovir (Black et al. 2001).  
 
Genetic modifications of the active site represented by a tripeptide motif in thymidine kinase increases the substrate affinity of HSV-TK towards GCV and ACV (Black et al. 1996). Two promising mutant HSV-TKs have been found by large mutagenesis screenings modifying several amino acids and conducting sensitivity assays for ganciclovir and acyclovir (Black et al. 2001).  
 
<br>
 
<br>
<p><h3>Mouse guanlyate kinase BBa_K404111</h3>
+
<p><h3>Mouse guanlyate kinase </h3>(BBa_K404111)<br>
 
<b>Guanylate kinases  (GMKs)</b> are involved in the salvage pathway of mono-phosphorylated guanosine (GMP) nucleosides to GDP therefore being essential in nucleotide maturation (Stolworthy & Black 2001). By introducing transgenic thymidine kinases (TKs) into tumor cells, a bottleneck occurs by overexpression of mono-phosphorylated intermediates. To overcome the accumulation of these non-toxic molecules, Willmon, Krabbenhoft, & Black (2006) fused the herpes simplex virus thymidine kinase (HSV-TK) to the guanylate kinase from M. musculus and demonstrated enhanced tumor killing in vitro. <br />
 
<b>Guanylate kinases  (GMKs)</b> are involved in the salvage pathway of mono-phosphorylated guanosine (GMP) nucleosides to GDP therefore being essential in nucleotide maturation (Stolworthy & Black 2001). By introducing transgenic thymidine kinases (TKs) into tumor cells, a bottleneck occurs by overexpression of mono-phosphorylated intermediates. To overcome the accumulation of these non-toxic molecules, Willmon, Krabbenhoft, & Black (2006) fused the herpes simplex virus thymidine kinase (HSV-TK) to the guanylate kinase from M. musculus and demonstrated enhanced tumor killing in vitro. <br />
 
<br />
 
<br />

Revision as of 21:06, 27 October 2010

Mouse guanylate kinase - thymidine kinase TK30 (Fusion protein mGMK_TK30)

Freiburg10 VectorplasmidBricks 10.png

Tymidine kinase

(BBa_K404109)

Thymidine kinase (TK) (EC 2.7.1.21) is known to be involved in the salvage pathway of nucleosides to nucleotides (Andrei et al. 2005). Due to its broader spectrum for different substrates, herpes simplex virus thymidine kinase (HSV-TK) is widely used in gene therapy approaches instead of endogenous thymidine kinases (Black et al. 1996). The transgenic introduced HSV-TK monophosphrylates nucleosides or nucleoside analogs such as ganciclovir (GCV) or acyclovir (AVC) followed by further phosphorylation through cellular kinases to nucleoside triphsphosphates. Incorporation of nucleotide analogs such as ganciclovir triphosphate or acyclovir triphosphates leads to DNA chain termination (Reardon 1989) and finally results in cell death. Genetic modifications of the active site represented by a tripeptide motif in thymidine kinase increases the substrate affinity of HSV-TK towards GCV and ACV (Black et al. 1996). Two promising mutant HSV-TKs have been found by large mutagenesis screenings modifying several amino acids and conducting sensitivity assays for ganciclovir and acyclovir (Black et al. 2001).

Mouse guanlyate kinase

(BBa_K404111)

Guanylate kinases (GMKs) are involved in the salvage pathway of mono-phosphorylated guanosine (GMP) nucleosides to GDP therefore being essential in nucleotide maturation (Stolworthy & Black 2001). By introducing transgenic thymidine kinases (TKs) into tumor cells, a bottleneck occurs by overexpression of mono-phosphorylated intermediates. To overcome the accumulation of these non-toxic molecules, Willmon, Krabbenhoft, & Black (2006) fused the herpes simplex virus thymidine kinase (HSV-TK) to the guanylate kinase from M. musculus and demonstrated enhanced tumor killing in vitro.

Sequence and Features BBa_K404113 SequenceAndFeatures