Difference between revisions of "Part:BBa K082034:Experience"
(→Cloning) |
(→Cloning) |
||
Line 15: | Line 15: | ||
|} | |} | ||
Since the part BBa_K082034 was distributed in the plasmid pSB1A2 it could readily be used for the experiments and did not have to be cloned further. | Since the part BBa_K082034 was distributed in the plasmid pSB1A2 it could readily be used for the experiments and did not have to be cloned further. | ||
− | pSEVA132 required some preparation. First pSB1A2 and pSEVA132 were digested according to the protocol found [http://openwetware.org/wiki/Engineering_BioBrick_vectors_from_BioBrick_parts/Restriction_digest here]. The restriction enzymes used were | + | pSEVA132 required some preparation. First pSB1A2 and pSEVA132 were digested according to the protocol found [http://openwetware.org/wiki/Engineering_BioBrick_vectors_from_BioBrick_parts/Restriction_digest here]. The restriction enzymes used were EcoRI and PstI. The part was then isolated from pSB1A2 with an agarose gel and ligated into pSEVA132 according to the [http://www.neb.com/nebecomm/products/protocol2.asp quick ligation protocol] of New England Biolabs to give rise to the plasmid pSEVA132_BBa_K082034. Chemically competent ''E. coli'' DH5α cells were transformed by the [http://www.neb.com/nebecomm/products/protocol3.asp transformation protocol] of New England Biolabs. |
<br> | <br> | ||
<br> | <br> |
Revision as of 17:03, 27 October 2010
This experience page is provided so that any user may enter their experience using this part.
Please enter
how you used this part and how it worked out.
Characterization of BBa_K082034 by ETH Zurich 2010 iGEM Team
Introduction
The iGEM 2010 team of ETH Zurich considered this part as a constitutively expressed reporter in order to verify the success of a special [http://2010.igem.org/Team:ETHZ_Basel/Biology/Cloning cloning strategy]. We therefore made an effort to characterize it. Since the part contains a lacI binding site, the capacity of cytosolic LacI for repression was evaluated. With the aim to outcompete cytosolic LacI two plasmids with elevated copy number for the expression of the part were analyzed: pSB1A2 (high copy plasmid) and pSEVA132 (medium copy).
Cloning
Since the part BBa_K082034 was distributed in the plasmid pSB1A2 it could readily be used for the experiments and did not have to be cloned further.
pSEVA132 required some preparation. First pSB1A2 and pSEVA132 were digested according to the protocol found [http://openwetware.org/wiki/Engineering_BioBrick_vectors_from_BioBrick_parts/Restriction_digest here]. The restriction enzymes used were EcoRI and PstI. The part was then isolated from pSB1A2 with an agarose gel and ligated into pSEVA132 according to the [http://www.neb.com/nebecomm/products/protocol2.asp quick ligation protocol] of New England Biolabs to give rise to the plasmid pSEVA132_BBa_K082034. Chemically competent E. coli DH5α cells were transformed by the [http://www.neb.com/nebecomm/products/protocol3.asp transformation protocol] of New England Biolabs.
control digest of pSB1A2. lane 1: [http://www.neb.com/nebecomm/products/productn0468.asp 1kb ladder]; lane 2: digested pSB1A2, part at 1.1kb, vector at 2kb.
control digest of pSEVA213. lane 1 and 6: [http://www.neb.com/nebecomm/products/productn0468.asp 1kb ladder]; lane 2 and 4: pSEVA132_BBa_K082034 not digested; lane 3 and 5: digested pSEVA132_BBa_K082034, part at 1.1kb, vector at 4.5kb.
Plasmids
plasmid | origin | resistance | additional information |
---|---|---|---|
pSB1A2 | pMB1; 100-300 copies/cell | amp | link to registry |
pSEVA132 | pBBR1; approx. 75 copies/cell | kan | From Victor de Lorenzo's lab; to see the analysis of the [http://2010.igem.org/Team:ETHZ_Basel/Biology/Implementation#Experimental_realization copy number] visit the link (pSEVA132 = wv1) |
pKQV4 | pBR322 | tet, amp | [1]; contains lacIq gene |
BBa_K082034 in pSB1A2
Methods
An initial culture of E. coli DH5α (5 ml LB in 15 ml Falcon tube) was incubated overnight on a shaker (37°C, 220rpm). From this initial culture 1 ml were transferred to 25 ml Falcon tubes containing 4 ml LB. After one hour of incubation induction was initiated by 5uM, 50uM, 500uM and 5 mM Isopropyl-β-D-thiogalactopyranosid (IPTG) respectively. Fluorescence (excitation at 485nm and emission at 530nm) and optical density at 595 nm was measured after two hours of incubation with a PerkinElmer Victor3 Fluorometer.
From the measured fluorescence the fluorescence of an LB blank was substracted and then divided by the difference in optical density between the sample and the LB blank. The obtained values were normalized by the control (DH5α cells not carrying the plasmid).
Results
E. coli DH5α cells harboring pSB1A2_BBa_K082034 showed an increase of fluorescence by a factor of around 6 compared to E. coli DH5α cells not containing the plasmid (see picture on the right). As a representative the culture with an induction level of 5mM is shown. However, inducer concentration did not have an effect on fluorescence.
Conclusion
It seems that the endogenous level of LacI is not sufficient to repress the part efficiently. Thus, the fluorescence observed resulted from leaky expression, while the effect of the inducer was probably hidden behind noise. pSB1A2_BBa_K082034 seems suitable for constitutive expression of GFP. The experiment would need to be repeated in order to get significant results.
BBa_K082034 in pSEVA132
Methods
In order to prevent leaky expression of the part the plasmid pKQV4 was introduced in addition to pSEVA132_BBa_K082034. pKQV4 contains a LacI repressor gene, which is constitutively expressed.
From an initial culture of E. coli DH5α cells (5 ml LB in 15 ml Falcon tube, incubation overnight at 37°C, 220rpm) cultures (10 ml LB in 100 ml Erlenmayer flask) were inoculated to an OD (at 600 nm, using an Eppendorf Biophotomer) of 0.05. After 1 hour of incubation (37°C, 220rpm) expression was initiated by 1mM IPTG.
Results
Conclusion
Cells harboring only pSEVA132_BBa_K082034 and no pKQV4_lacIq showed some leaky expression when not induced. However, cells containing pSEVA132_BBa_K082034 and pKQV4_lacIq did not show any expression even at an inducer concentration of 1 mM. The reason for this might be the elevated cytosolic level of LacI provoked by the additional pKQV4_lacIq plasmid.
For constitutive expression of GFP the system with pSEVA132_BBa_K082034 could be useful.
Reference
[1] [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC400994/pdf/emboj00129-0314.pdf Strauch, M. A.; Spiegelman, G. B.; Perego, M.; Johnson, W. C.; Burbulys, D.; Hoch, J. A. The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J. 1989, 8, 1615-1621.]
User Reviews
UNIQ47f9689e6a981f71-partinfo-00000001-QINU UNIQ47f9689e6a981f71-partinfo-00000002-QINU