Difference between revisions of "Part:BBa K364324:Design"
(→Source) |
(→Source) |
||
Line 12: | Line 12: | ||
===Source=== | ===Source=== | ||
− | + | Artificial eukaryotic TF made of Gal4 DBD (DNA Binding Domain) and C. elegans orphan nuclear receptor LBD (Ligand Binding Domain) | |
+ | |||
NHR-80 | NHR-80 | ||
nhr-80 encodes a nuclear hormone receptor, expressed in the intestine, that regulates expression of the delta-9 desaturases FAT-5/-6/-7, and thus regulates fatty acid metabolism. nhr-80 is specific to nematodes, being a divergent ortholog of HNF4 with many paralogs in C. elegans | nhr-80 encodes a nuclear hormone receptor, expressed in the intestine, that regulates expression of the delta-9 desaturases FAT-5/-6/-7, and thus regulates fatty acid metabolism. nhr-80 is specific to nematodes, being a divergent ortholog of HNF4 with many paralogs in C. elegans | ||
+ | Artificial eukaryotic TF made of Gal4 DBD (DNA Binding Domain) and C. elegans orphan nuclear receptor LBD (Ligand Binding Domain) | ||
+ | |||
+ | Gal4 DBD | ||
+ | |||
+ | This protein is a positive regulator for the gene expression of the galactose-induced genes such as GAL1, GAL2, GAL7, GAL10, and MEL1 which encode for the enzymes used to convert galactose to glucose. This protein contains a fungal Zn(2)-Cys(6) binuclear cluster domain. | ||
+ | |||
+ | This composite artificial transcription factor will activate any reporter or any gene in general that has a UAS (Upper Activating Sequence) 3' of it's promoter. The usual binding sites of reporters, contain multiple UAS elements. In order to have a POPS output, the LBD has to recruit activators in the cell. This can be initiated by ligand binding or by recruiting a protein that has a fused strong activator like the VP activator. | ||
+ | |||
+ | With this system NHR (Nuclear Hormone Receptor) ligands or NHR interacting partners can be screened. | ||
+ | |||
+ | The NHR: cofactor-VP interaction should be also broken by a potential ligand binding, this is why this setup is also suitable for ligand identification. The benefit of the cofactor-VP interaction test is that the dynamic range of the assay is much higher than the dynamic range of the normal Gal4-NHR ligand activation assay. | ||
+ | |||
+ | More info about this project on the wiki pages of Team Debrecen-Hungary 2010. [http://2010.igem.org/Team:Debrecen-Hungary] | ||
===References=== | ===References=== |
Revision as of 15:44, 22 October 2010
Gal4-NHR80
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 218
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 137
Illegal BsaI.rc site found at 681
Design Notes
Compatible with RFC-10 and RFC-25.
Source
Artificial eukaryotic TF made of Gal4 DBD (DNA Binding Domain) and C. elegans orphan nuclear receptor LBD (Ligand Binding Domain)
NHR-80
nhr-80 encodes a nuclear hormone receptor, expressed in the intestine, that regulates expression of the delta-9 desaturases FAT-5/-6/-7, and thus regulates fatty acid metabolism. nhr-80 is specific to nematodes, being a divergent ortholog of HNF4 with many paralogs in C. elegans Artificial eukaryotic TF made of Gal4 DBD (DNA Binding Domain) and C. elegans orphan nuclear receptor LBD (Ligand Binding Domain)
Gal4 DBD
This protein is a positive regulator for the gene expression of the galactose-induced genes such as GAL1, GAL2, GAL7, GAL10, and MEL1 which encode for the enzymes used to convert galactose to glucose. This protein contains a fungal Zn(2)-Cys(6) binuclear cluster domain.
This composite artificial transcription factor will activate any reporter or any gene in general that has a UAS (Upper Activating Sequence) 3' of it's promoter. The usual binding sites of reporters, contain multiple UAS elements. In order to have a POPS output, the LBD has to recruit activators in the cell. This can be initiated by ligand binding or by recruiting a protein that has a fused strong activator like the VP activator.
With this system NHR (Nuclear Hormone Receptor) ligands or NHR interacting partners can be screened.
The NHR: cofactor-VP interaction should be also broken by a potential ligand binding, this is why this setup is also suitable for ligand identification. The benefit of the cofactor-VP interaction test is that the dynamic range of the assay is much higher than the dynamic range of the normal Gal4-NHR ligand activation assay.
More info about this project on the wiki pages of Team Debrecen-Hungary 2010. [http://2010.igem.org/Team:Debrecen-Hungary]