Difference between revisions of "Part:BBa K5136237"

Line 7: Line 7:
 
LexRO is a synthetic light-switchable repressor, based on a novel LOV light sensor domain, RsLOV. In the darkness, LexRO dimerizes and binds to its cognate operator sequence to repress promoter activity. Upon light exposure, the LexRO dimer dissociates, causing dissociation from the operator sequence, and initiates gene expression.
 
LexRO is a synthetic light-switchable repressor, based on a novel LOV light sensor domain, RsLOV. In the darkness, LexRO dimerizes and binds to its cognate operator sequence to repress promoter activity. Upon light exposure, the LexRO dimer dissociates, causing dissociation from the operator sequence, and initiates gene expression.
  
===SD17===
+
===SD7===
SD17 is a ribosome binding site on the genome , which is capable of recruiting ribosomes in engineered <i>E. coli.</i>
+
A SD sequence upstream of LexRO encoding gene. SD7 is a ribosome binding site on the genome , which is capable of recruiting ribosomes in engineered <i>E. coli.</i>
 
+
===pHybrid 2)-114===
+
pHybrid 2)-114 version is an engineering promoter that is suppressed by the Aca2 repressor, which uses the -35 and -10 regions of J23114.
+
  
 
===pColE408-RBS===
 
===pColE408-RBS===
 
pColE408-RBS is a combination of the promoter pColE408 and RBS. PcolE408 is a promoter to which LexRO (<partinfo>BBa_K5136042</partinfo>) binds and represses the expression of genes driven by the promoter. The promoter mainly consists of two parts: ColE promoter, which is a strong promoter, and LexA(408)-operator, which is the binding site of LexRO.  
 
pColE408-RBS is a combination of the promoter pColE408 and RBS. PcolE408 is a promoter to which LexRO (<partinfo>BBa_K5136042</partinfo>) binds and represses the expression of genes driven by the promoter. The promoter mainly consists of two parts: ColE promoter, which is a strong promoter, and LexA(408)-operator, which is the binding site of LexRO.  
===ccdB===
 
ccdB gene is located on the Escherichia coli F-factor plasmid and is part of the toxin-antitoxin system encoded by the ccd operon, responsible for plasmid maintenance during cell division. ccdB encodes a toxic protein that acts as a DNA gyrase poison. It can bind DNA gyrase to the broken double-stranded DNA, leading to cell death.
 
 
===ccdA===
 
ccdA is the gene found within the ccd operon, encoding the antidote protein (CcdA) that protects cells from the toxic effects of CcdB. CcdA protein is easily degraded by Lonprotease.The cell loses the ccdA gene due to the loss of the F plasmid, causing the cell to succumb to the toxicity of CcdB.
 
  
 
===mCherry===
 
===mCherry===

Revision as of 09:41, 2 October 2024


J23106-SD7-LexRO-B0015-pColE408-mCherry-B0015

Biology

LexRO

LexRO is a synthetic light-switchable repressor, based on a novel LOV light sensor domain, RsLOV. In the darkness, LexRO dimerizes and binds to its cognate operator sequence to repress promoter activity. Upon light exposure, the LexRO dimer dissociates, causing dissociation from the operator sequence, and initiates gene expression.

SD7

A SD sequence upstream of LexRO encoding gene. SD7 is a ribosome binding site on the genome , which is capable of recruiting ribosomes in engineered E. coli.

pColE408-RBS

pColE408-RBS is a combination of the promoter pColE408 and RBS. PcolE408 is a promoter to which LexRO (BBa_K5136042) binds and represses the expression of genes driven by the promoter. The promoter mainly consists of two parts: ColE promoter, which is a strong promoter, and LexA(408)-operator, which is the binding site of LexRO.

mCherry

mCherry is one of several "second-generation" monomeric fluorescent proteins developed in Roger Tsien's laboratory at UCSD (cf., Nature Biotechnology 22, 1567 - 1572 (2004).

Characterization=

Facing the threat that the unwanted survival and accumulation of engineered bacteria might happen once they escape to opening environment (1), we designed a light-triggered kill switch for biocontainment of the engineered bacteria. Rather than responding to some chemical inducers, the light-triggered kill switch will be turned to ON state after the engineered bacteria is exposed to the light illumination of specific wavelength. We chose a blue light-inducible optogenetic system, LexRO/pColE408 (2), to control the expression of CcdB toxin, in which an additional expression module of CcdA antitoxin was incorporated as well to neutralize the leaky toxin when the kill switch is in OFF state. Here, we firstly characterized the cytotoxicity of CcdB toxin and the blue light-inducible performance of LexRO/pColE408 system respectively, and then tested the killing effect of the blue light-induced kill switch. Further optimization for improving the killing effect of the switch was also tried primarily.

Figure 1 Characterization of blue light-induced LexRO/pColE408. (A) The gene circuit to characterize blue light-responding performance of LexRO/pColE408 system (BBa_K5136237) on pSB4A5 vector. (B) Agarose gel electrophoresis of the colony PCR products of BBa_K5136237_pSB4A5 in E. coli BL21(DE3). (C) The relative fluorescence units (RFU) of bacterial culture subtracted the background fluorescence of growth media, resulting in the RFUmCherry. p-value: 0.0029 (**).

We turned to characterize the blue light-responding performance of LexRO/pColE408 optogenetic system used in the kill switch. The photosensor LexRO was controlled by a medium constitutive promoter J23106 and a medium RBS SD7 (3) (BBa_K5136045), while the mCherry fluorescent protein (BBa_J06504) was chosen as the reporter under the control of promoter pColE408 (BBa_K5136044) (Figure 1A), thus generating the composite part BBa_K5136237 on the pSB4A5 vector. BL21(DE3) was used to characterize this optogenetic system, and positive transformants were selected and confirmed by colony PCR (Figure 1B) and sequencing. Characterization was carried out in a self-made blue light (460 nm) illumination device. After cultured for about 17 hours upon blue light illumination (with a relative light intensity of 250) or kept in dark condition, red fluorescence intensity (λex = 585 nm, λem = 615 nm) and OD600 were measured. The normalized fluorescence intensity of “Light” group showed a significant higher value than that of “Dark” group (about 2 times), indicating that this optogenetic system could be induced by blue light (Figure 1C) indeed.

Reference


1. R. Freudl, Signal Peptides for Recombinant Protein Secretion in Bacterial Expression Systems. Microb. Cell Fact. 17, 52 (2018).
2. H. Owji, N. Nezafat, M. Negahdaripour, A. Hajiebrahimi, Y. Ghasemi, A Comprehensive Review of Signal Peptides: Structure, Roles, and Applications. Eur. J. Cell Biol. 97, 422–441 (2018).
3. L. A. Fernández, I. Sola, L. Enjuanes, V. De Lorenzo, Specific Secretion of Active Single-chain Fv Antibodies into the Supernatants of Escherichia coli Cultures by Use of the Hemolysin System. Appl. Environ. Microbiol. 66, 5024–5029 (2000). Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 7
    Illegal NheI site found at 30
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 456
  • 1000
    COMPATIBLE WITH RFC[1000]