Difference between revisions of "Part:BBa K5237014"

Line 37: Line 37:
 
     padding-right: 0px !important;
 
     padding-right: 0px !important;
 
   }
 
   }
 +
 
</style>
 
</style>
 
 
<body>
 
<body>
  <!-- Part summary -->
+
<!-- Part summary -->
  <section id="1">
+
<section id="1">
    <h1>fgRNA processing casette</h1>
+
<h1>fgRNA processing casette</h1>
    <p>
+
<p>
 
       Incorporating Cas12a into our Cas staple design allows us to utilize the ability of processing its own pre-crRNA
 
       Incorporating Cas12a into our Cas staple design allows us to utilize the ability of processing its own pre-crRNA
 
       by
 
       by
Line 50: Line 50:
 
       scaffold, suggesting the Cas12a to be able to process a CRISPR-array of fgRNA, while maintaining functionality.
 
       scaffold, suggesting the Cas12a to be able to process a CRISPR-array of fgRNA, while maintaining functionality.
 
     </p>
 
     </p>
    <p>&nbsp;</p>
+
<p> </p>
  </section>
+
</section>
  <div id="toc" class="toc">
+
<div class="toc" id="toc">
    <div id="toctitle">
+
<div id="toctitle">
      <h1>Contents</h1>
+
<h1>Contents</h1>
    </div>
+
</div>
    <ul>
+
<ul>
      <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
+
<li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
 
             overview</span></a>
 
             overview</span></a>
      </li>
+
</li>
      <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
+
<li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
 
             Biology</span></a>
 
             Biology</span></a>
        <ul>
+
<ul>
          <li class="toclevel-2 tocsection-2.1"><a href="#2.1"><span class="tocnumber">2.1</span> <span
+
<li class="toclevel-2 tocsection-2.1"><a href="#2.1"><span class="tocnumber">2.1</span> <span class="toctext">The CRISPR/Cas System as a Gene Editing Tool</span></a>
              class="toctext">The CRISPR/Cas System as a Gene Editing Tool</span></a>
+
</li>
          </li>
+
<li class="toclevel-2 tocsection-2.2"><a href="#2.2"><span class="tocnumber">2.2</span> <span class="toctext">Differences between Cas9 and Cas12a</span></a>
          <li class="toclevel-2 tocsection-2.2"><a href="#2.2"><span class="tocnumber">2.2</span> <span
+
</li>
              class="toctext">Differences between Cas9 and Cas12a</span></a>
+
<li class="toclevel-2 tocsection-2.3"><a href="#2.3"><span class="tocnumber">2.3</span> <span class="toctext">Dead Cas Proteins and their Application</span></a>
          </li>
+
</li>
          <li class="toclevel-2 tocsection-2.3"><a href="#2.3"><span class="tocnumber">2.3</span> <span
+
<li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
              class="toctext">Dead Cas Proteins and their Application</span></a>
+
      </li>
+
      <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
+
 
             and part evolution</span></a>
 
             and part evolution</span></a>
      </li>
+
</li>
      <li class="toclevel-1 tocsection-4"><a href="#4"><span class="tocnumber">4</span> <span
+
<li class="toclevel-1 tocsection-4"><a href="#4"><span class="tocnumber">4</span> <span class="toctext">Results</span></a>
            class="toctext">Results</span></a>
+
</li>
      </li>
+
<li class="toclevel-1 tocsection-5"><a href="#5"><span class="tocnumber">5</span> <span class="toctext">References</span></a>
      <li class="toclevel-1 tocsection-5"><a href="#5"><span class="tocnumber">5</span> <span
+
</li>
            class="toctext">References</span></a>
+
</ul>
      </li>
+
</li></ul></div>
    </ul>
+
<section><p><br/><br/></p>
  </div>
+
<font size="5"><b>The PICasSO Toolbox </b> </font>
  <section>
+
<div class="thumb" style="margin-top:10px;"></div>
    <p><br><br></p>
+
<div class="thumbinner" style="width:550px"><img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" style="width:99%;"/>
    <font size="5"><b>The PICasSO Toolbox </b> </font>
+
<div class="thumbcaption">
 
+
<i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
    <div class="thumb" style="margin-top:10px;"></div>
+
</div>
    <div class="thumbinner" style="width:550px"><img alt=""
+
</div>
        src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg"
+
<p>
        style="width:99%;" class="thumbimage">
+
<br/>
      <div class="thumbcaption">
+
       While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the <b>3D
        <i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
+
        spatial organization</b> of DNA is well-known to be an important layer of information encoding in
      </div>
+
      particular in eukaryotes, playing a crucial role in
    </div>
+
       gene regulation and hence
    </div>
+
       cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the
 
+
      genomic spatial
    <p>
+
       architecture are limited, hampering the exploration of
      <br>
+
       3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a
       Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene
+
       <b>powerful
       regulation,
+
        molecular toolbox for rationally engineering genome 3D architectures</b> in living cells, based on
       cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture
+
      various DNA-binding proteins.
       remain limited, rendering it challenging to explore the full potential of the
+
       3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
+
       toolbox based on various DNA-binding proteins to address this issue.
+
 
     </p>
 
     </p>
    <p>
+
<p>
 
       The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
 
       The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
       re-programming
+
       <b>re-programming
      of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic
+
        of DNA-DNA interactions</b> using engineered "protein staples" in living cells. This enables
       interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation.
+
      researchers to recreate naturally occurring alterations of 3D genomic
       Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
+
       interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for
       testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
+
      artificial gene regulation and cell function control.
       parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts.
+
       Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic
 +
      loci into
 +
      spatial proximity.
 +
      To unlock the system's full potential, we introduce versatile <b>chimeric CRISPR/Cas complexes</b>,
 +
      connected either at
 +
      the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are
 +
      referred to as protein- or Cas staples, respectively. Beyond its
 +
      versatility with regard to the staple constructs themselves, PICasSO includes <b>robust assay</b> systems to
 +
      support the engineering, optimization, and
 +
       testing of new staples <i>in vitro</i> and <i>in vivo</i>. Notably, the PICasSO toolbox was developed in a
 +
       design-build-test-learn <b>engineering cycle closely intertwining wet lab experiments and computational
 +
        modeling</b> and iterated several times, yielding a collection of well-functioning and -characterized
 +
      parts.
 
     </p>
 
     </p>
 
+
<p>At its heart, the PICasSO part collection consists of three categories. <br/><b>(i)</b> Our <b>DNA-binding
    <p>At its heart, the PICasSO part collection consists of three categories. <br><b>(i)</b> Our <b>DNA-binding
+
 
         proteins</b>
 
         proteins</b>
 
       include our
 
       include our
       finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
+
       finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as
       new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling
+
      "half staples" that can be combined by scientists to compose entirely
       and can be further engineered to create alternative, simpler and more compact staples. <br>
+
       new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple
      <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and
+
      and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for
 +
      successful stapling
 +
       and can be further engineered to create alternative, simpler, and more compact staples. <br/>
 +
<b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance and expand the
 +
      functionality of our Cas and
 
       Basic staples. These
 
       Basic staples. These
       consist of
+
       consist of staples dependent on
       protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>.
+
       cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific,
       Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs
+
      dynamic stapling <i>in vivo</i>.
       with our
+
       We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into
       interkingdom conjugation system. <br>
+
      target cells, including mammalian cells,
      <b>(iii)</b> As the final category of our collection, we provide parts that support the use of our <b>custom
+
       with our new
 +
       interkingdom conjugation system. <br/>
 +
<b>(iii)</b> As the final category of our collection, we provide parts that underlie our <b>custom
 
         readout
 
         readout
         systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
+
         systems</b>. These include components of our established FRET-based proximity assay system, enabling
 +
      users to
 
       confirm
 
       confirm
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
+
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a
       readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking
+
       luciferase reporter, which allows for straightforward experimental assessment of functional enhancer
 +
      hijacking events
 
       in mammalian cells.
 
       in mammalian cells.
 
     </p>
 
     </p>
    <p>
+
<p>
       The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark
+
       The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark style="background-color: #FFD700; color: black;">The highlighted parts showed
        style="background-color: #FFD700; color: black;">The highlighted parts showed
+
         exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other
         exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other parts in
+
      parts in
 
       the
 
       the
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
+
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer
       own custom Cas staples, enabling further optimization and innovation.<br>
+
      their
    </p>
+
       own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome
    <p>
+
      engineering.<br/>
      <font size="4"><b>Our part collection includes:</b></font><br>
+
</p>
    </p>
+
<p>
 
+
<font size="4"><b>Our part collection includes:</b></font><br/>
    <table style="width: 90%; padding-right:10px;">
+
</p>
      <td colspan="3" align="left"><b>DNA-binding proteins: </b>
+
<table style="width: 90%; padding-right:10px;">
         The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
+
<td align="left" colspan="3"><b>DNA-Binding Proteins: </b>
        easy assembly.</td>
+
         Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions <i>in vivo</i></td>
      <tbody>
+
<tbody>
        <tr bgcolor="#FFD700">
+
<tr bgcolor="#FFD700">
          <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
          <td>fgRNA Entry vector MbCas12a-SpCas9</td>
+
<td>Fusion Guide RNA Entry Vector MbCas12a-SpCas9</td>
          <td>Entryvector for simple fgRNA cloning via SapI</td>
+
<td>Entry vector for simple fgRNA cloning via SapI</td>
        </tr>
+
</tr>
        <tr bgcolor="#FFD700">
+
<tr bgcolor="#FFD700">
          <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
          <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
+
<td>Staple Subunit: dMbCas12a-Nucleoplasmin NLS</td>
          <td>Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple</td>
+
<td>Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
        </tr>
+
          </td>
        <tr bgcolor="#FFD700">
+
</tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
+
<tr bgcolor="#FFD700">
          <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
          <td>Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple
+
<td>Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
 +
<td>Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
 
           </td>
 
           </td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
          <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
+
<td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
          <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close
+
<td>Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into
 +
            close
 
             proximity
 
             proximity
 
           </td>
 
           </td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
          <td>Staple subunit: Oct1-DBD</td>
+
<td>Staple Subunit: Oct1-DBD</td>
          <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br>
+
<td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br/>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
          <td>Staple subunit: TetR</td>
+
<td>Staple Subunit: TetR</td>
          <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br>
+
<td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br/>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
          <td>Simple staple: TetR-Oct1</td>
+
<td>Simple Staple: TetR-Oct1</td>
          <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
+
<td>Functional staple that can be used to bring two DNA strands in close proximity</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
          <td>Staple subunit: GCN4</td>
+
<td>Staple Subunit: GCN4</td>
          <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
+
<td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
          <td>Staple subunit: rGCN4</td>
+
<td>Staple Subunit: rGCN4</td>
          <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
+
<td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
          <td>Mini staple: bGCN4</td>
+
<td>Mini Staple: bGCN4</td>
          <td>
+
<td>
 
             Assembled staple with minimal size that can be further engineered</td>
 
             Assembled staple with minimal size that can be further engineered</td>
        </tr>
+
</tr>
      </tbody>
+
</tbody>
      <td colspan="3" align="left"><b>Functional elements: </b>
+
<td align="left" colspan="3"><b>Functional Elements: </b>
         Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization
+
         Protease-cleavable peptide linkers and inteins are used to control and modify staples for further
 +
        optimization
 
         for custom applications</td>
 
         for custom applications</td>
      <tbody>
+
<tbody>
        <tr bgcolor="#FFD700">
+
<tr bgcolor="#FFD700">
          <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
          <td>Cathepsin B-cleavable Linker: GFLG</td>
+
<td>Cathepsin B-cleavable Linker: GFLG</td>
          <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive
+
<td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make
 +
            responsive
 
             staples</td>
 
             staples</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
          <td>Cathepsin B Expression Cassette</td>
+
<td>Cathepsin B Expression Cassette</td>
          <td>Expression Cassette for the overexpression of cathepsin B</td>
+
<td>Expression cassette for the overexpression of cathepsin B</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
          <td>Caged NpuN Intein</td>
+
<td>Caged NpuN Intein</td>
          <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation.
+
<td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease
             Can be used to create functionalized staples
+
             activation, which can be used to create functionalized staple
             units</td>
+
             subunits</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
          <td>Caged NpuC Intein</td>
+
<td>Caged NpuC Intein</td>
          <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation.
+
<td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease
             Can be used to create functionalized staples
+
             activation, which can be used to create functionalized staple
             units</td>
+
             subunits</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
          <td>fgRNA processing casette</td>
+
<td>Fusion Guide RNA Processing Casette</td>
          <td>Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D
+
<td>Processing cassette to produce multiple fgRNAs from one transcript, that can be used for
             genome reprograming</td>
+
            multiplexed 3D
        </tr>
+
             genome reprogramming</td>
        <tr>
+
</tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
+
<tr>
          <td>Intimin anti-EGFR Nanobody</td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
          <td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large
+
<td>Intimin anti-EGFR Nanobody</td>
 +
<td>Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for
 +
            large
 
             constructs</td>
 
             constructs</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td>
          <td>incP origin of transfer</td>
+
<td>IncP Origin of Transfer</td>
          <td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of
+
<td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a
 +
            means of
 
             delivery</td>
 
             delivery</td>
        </tr>
+
</tr>
      </tbody>
+
</tbody>
      <td colspan="3" align="left"><b>Readout Systems: </b>
+
<td align="left" colspan="3"><b>Readout Systems: </b>
         FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
+
         FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and
        enabling swift testing and easy development for new systems</td>
+
        mammalian cells
      <tbody>
+
      </td>
        <tr bgcolor="#FFD700">
+
<tbody>
          <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
+
<tr bgcolor="#FFD700">
          <td>FRET-Donor: mNeonGreen-Oct1</td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
          <td>FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize
+
<td>FRET-Donor: mNeonGreen-Oct1</td>
 +
<td>FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to
 +
            visualize
 
             DNA-DNA
 
             DNA-DNA
 
             proximity</td>
 
             proximity</td>
        </tr>
+
</tr>
        <tr bgcolor="#FFD700">
+
<tr bgcolor="#FFD700">
          <td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
          <td>FRET-Acceptor: TetR-mScarlet-I</td>
+
<td>FRET-Acceptor: TetR-mScarlet-I</td>
          <td>Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize DNA-DNA
+
<td>Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize
 +
            DNA-DNA
 
             proximity</td>
 
             proximity</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
          <td>Oct1 Binding Casette</td>
+
<td>Oct1 Binding Casette</td>
          <td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET
+
<td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET
 
             proximity assay</td>
 
             proximity assay</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
          <td>TetR Binding Cassette</td>
+
<td>TetR Binding Cassette</td>
          <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
+
<td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the
 +
            FRET
 
             proximity assay</td>
 
             proximity assay</td>
        </tr>
+
</tr>
        <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
        <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
+
<td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
        <td>Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker</td>
+
<td>Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
         </tr>
+
         </td>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
          <td>NLS-Gal4-VP64</td>
+
<td>NLS-Gal4-VP64</td>
          <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking</td>
+
<td>Trans-activating enhancer, that can be used to simulate enhancer hijacking</td>
        </tr>
+
</tr>
        <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
        <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
+
<td>mCherry Expression Cassette: UAS, minimal Promoter, mCherry</td>
        <td>Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker</td>
+
<td>Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker</td>
        </tr>
+
<tr>
        <tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
          <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
+
<td>Oct1 - 5x UAS Binding Casette</td>
          <td>Oct1 - 5x UAS binding casette</td>
+
<td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
          <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
+
</tr>
        </tr>
+
<tr>
        <tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
          <td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
+
<td>TRE-minimal Promoter- Firefly Luciferase</td>
          <td>TRE-minimal promoter- firefly luciferase</td>
+
<td>Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence
          <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
+
            readout for
 
             simulated enhancer hijacking</td>
 
             simulated enhancer hijacking</td>
        </tr>
+
</tr>
      </tbody>
+
</tbody>
    </table>
+
</table></section>
    </p>
+
<section id="1">
  </section>
+
<h1>1. Sequence overview</h1>
  <section id="1">
+
</section>
    <h1>1. Sequence overview</h1>
+
  </section>
+
 
</body>
 
</body>
 
 
</html>
 
</html>
 
 
<!--################################-->
 
<!--################################-->
<span class='h3bb'>Sequence and Features</span>
+
<span class="h3bb">Sequence and Features</span>
 
<partinfo>BBa_K5237014 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K5237014 SequenceAndFeatures</partinfo>
 
<!--################################-->
 
<!--################################-->
 
 
<html>
 
<html>
 
 
<section id="2">
 
<section id="2">
  <h1>2. Usage and Biology</h1>
+
<h1>2. Usage and Biology</h1>
  <section id="2.1">
+
<section id="2.1">
    <h2>2.1 The CRISPR/Cas System as a Gene Editing Tool</h2>
+
<h2>2.1 The CRISPR/Cas System as a Gene Editing Tool</h2>
    <div class="thumb tright" style="margin:0;">
+
<div class="thumb tright" style="margin:0;">
      <div class="thumbinner" style="width:450px;">
+
<div class="thumbinner" style="width:450px;">
        <img alt="" class="thumbimage"
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/cas-staple-svg/background-cas9-cas12a-principle.svg" style="width:99%;"/>
          src="https://static.igem.wiki/teams/5237/wetlab-results/cas-staple-svg/background-cas9-cas12a-principle.svg"
+
<div class="thumbcaption">
          style="width:99%;" />
+
<i>
        <div class="thumbcaption">
+
<b>Figure 2: The CRISPR/Cas system (adapted from Pacesa <i>et al.</i> (2024))</b>
          <i>
+
            <b>Figure 2: The CRISPR/Cas system (adapted from Pacesa <i>et al.</i> (2024))</b>
+
 
             A and B, schematic structure of Cas9 and Cas12a with their sgRNA/crRNA, sitting on a DNA strand with the
 
             A and B, schematic structure of Cas9 and Cas12a with their sgRNA/crRNA, sitting on a DNA strand with the
 
             PAM.
 
             PAM.
Line 351: Line 367:
 
             symbolized by the scissors
 
             symbolized by the scissors
 
           </i>
 
           </i>
        </div>
+
</div>
      </div>
+
</div>
    </div>
+
</div>
    <p>
+
<p>
 
       In 2012, Jinek et al. discovered the use of the Clustered Regularly Interspaced Short Palindromic Repeats
 
       In 2012, Jinek et al. discovered the use of the Clustered Regularly Interspaced Short Palindromic Repeats
 
       (CRISPR)/Cas system to induce double-strand breaks in DNA. Since then, the system has been well established as a
 
       (CRISPR)/Cas system to induce double-strand breaks in DNA. Since then, the system has been well established as a
Line 371: Line 387:
 
       <i>Streptococcus pyogenes</i> (Pacesa et al., 2024).
 
       <i>Streptococcus pyogenes</i> (Pacesa et al., 2024).
 
     </p>
 
     </p>
    <p>
+
<p>
 
       A significant enhancement of this system was the introduction of single guide RNA (sgRNA)s, which combine the
 
       A significant enhancement of this system was the introduction of single guide RNA (sgRNA)s, which combine the
 
       functions of a tracrRNA and crRNA (Mali <i>et al.</i>, 2013).
 
       functions of a tracrRNA and crRNA (Mali <i>et al.</i>, 2013).
Line 377: Line 393:
 
       sequence accordingly.
 
       sequence accordingly.
 
     </p>
 
     </p>
  </section>
+
</section>
  <section id="2.2">
+
<section id="2.2">
    <h2>2.2 Differences between Cas9 and Cas12a</h2>
+
<h2>2.2 Differences between Cas9 and Cas12a</h2>
    <p>
+
<p>
 
       Over the following years, further CRISPR/Cas systems have been discovered, including the Cpf1 system, which has been
 
       Over the following years, further CRISPR/Cas systems have been discovered, including the Cpf1 system, which has been
 
       classified as Cas12a since then (Zetsche et al., 2015). Cas12a forms a class 2 type V system with its RNA, that in
 
       classified as Cas12a since then (Zetsche et al., 2015). Cas12a forms a class 2 type V system with its RNA, that in
Line 392: Line 408:
 
       with overhangs that are about 5nt long (Paul and Montoya, 2020).
 
       with overhangs that are about 5nt long (Paul and Montoya, 2020).
 
     </p>
 
     </p>
  </section>
+
</section>
  <section id="2.3">
+
<section id="2.3">
    <h2>2.3 Dead Cas Proteins and their Application</h2>
+
<h2>2.3 Dead Cas Proteins and their Application</h2>
 
+
<div class="thumb tright" style="margin:0;">
    <div class="thumb tright" style="margin:0;">
+
<div class="thumbinner" style="width:300px;">
      <div class="thumbinner" style="width:300px;">
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/figures-corrected/fgrna-processing.svg" style="width:99%;"/>
        <img alt="" src="https://static.igem.wiki/teams/5237/figures-corrected/fgrna-processing.svg"
+
<div class="thumbcaption">
          style="width:99%;" class="thumbimage" />
+
<i>
          <div class="thumbcaption">
+
<b>Figure 3: pre-fgRNA maturation by Cas12a</b>
            <i>
+
              <b>Figure 3: pre-fgRNA maturation by Cas12a</b>
+
 
               Depicted are the stages of a pre-fgRNA being expressed from the genome, cut by Cas12a into fgRNA molecules forming a RNP with the Cas12a.
 
               Depicted are the stages of a pre-fgRNA being expressed from the genome, cut by Cas12a into fgRNA molecules forming a RNP with the Cas12a.
 
             </i>
 
             </i>
          </div>
+
</div>
      </div>
+
</div>
    </div>
+
</div>
    <p>
+
<p>
 
       Specific mutations of these domains result in catalytic inactivity and therefore allow for the creation of nickases,
 
       Specific mutations of these domains result in catalytic inactivity and therefore allow for the creation of nickases,
 
       that only cut one of the DNA strands, or completely inactive Cas proteins (Koonin et al., 2023) (Kleinstiver et al.,
 
       that only cut one of the DNA strands, or completely inactive Cas proteins (Koonin et al., 2023) (Kleinstiver et al.,
Line 417: Line 431:
 
       to process the pre-fgRNA into individual fgRNA molecules (Fig. 3). This allows for even greater multiplexing.
 
       to process the pre-fgRNA into individual fgRNA molecules (Fig. 3). This allows for even greater multiplexing.
 
     </p>
 
     </p>
  </section>
+
</section>
  <section id="3" style="clear:both;">
+
<section id="3" style="clear:both;">
    <h1>3. Assembly and part evolution</h1>
+
<h1>3. Assembly and part evolution</h1>
    <p>
+
<p>
       For the cloning we employed the fgRNA entry vector (BBa_K5237000) resulting in a GGA using SapI with the insert being ordered as a DNA fragment.<br>
+
       For the cloning we employed the fgRNA entry vector (BBa_K5237000) resulting in a GGA using SapI with the insert being ordered as a DNA fragment.<br/>
 
       Cloning via this strategy resulted in the designed and planned out construct being confirmed by sanger sequencing (figure 4)
 
       Cloning via this strategy resulted in the designed and planned out construct being confirmed by sanger sequencing (figure 4)
 
     </p>
 
     </p>
    <div class="thumb">
+
<div class="thumb">
      <div class="thumbinner" style="width:60%;">
+
<div class="thumbinner" style="width:60%;">
        <img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/cloning-fgrna-proc.png"
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/cloning-fgrna-proc.png" style="width:99%;"/>
          style="width:99%;" class="thumbimage" />
+
<div class="thumbcaption">
          <div class="thumbcaption">
+
<i>
            <i>
+
<b>Figure 4: Positive cloning of the desired construct confirmed by Sanger sequencing.</b>
              <b>Figure 4: Positive cloning of the desired construct confirmed by Sanger sequencing.</b>
+
               Two clones were picked and mini prepped after 16 h hours and send to sequencing. Both clones had positive results and clean reads.
               Two clones were picked and mini prepped after 16 h hours and send to sequencing.
+
              Both clones had positive results and clean reads.
+
 
             </i>
 
             </i>
          </div>
+
</div>
      </div>
+
</div>
    </div>
+
</div>
  </section>
+
</section>
  <section id="4">
+
<section id="4">
    <h1>4. Results</h1>
+
<h1>4. Results</h1>
    <p>
+
<p>
       Due to time constraints we are not able to show data, nevertheless we are actively working on this assay.<br>
+
       Due to time constraints we are not able to show data, nevertheless we are actively working on this assay.<br/>
 
       The construct will be transfected into HEK293T cells together with a plasmid containing Cas12a and with a plasmid
 
       The construct will be transfected into HEK293T cells together with a plasmid containing Cas12a and with a plasmid
 
       containing a fusion Cas (<a href="https://parts.igem.org/Part:BBa_K5237003">BBa_K5237003</a>).
 
       containing a fusion Cas (<a href="https://parts.igem.org/Part:BBa_K5237003">BBa_K5237003</a>).
       The experiment will be carried out in technical replicates on a 6-well plate. <br>
+
       The experiment will be carried out in technical replicates on a 6-well plate. <br/>
 
       Lysis of the cells will occur 36 hours after transfection. Immediate RNA extraction will be performed with the miRNeasy
 
       Lysis of the cells will occur 36 hours after transfection. Immediate RNA extraction will be performed with the miRNeasy
 
       Tissue/Cells Advanced Kit by QIAGEN to ensure the extraction of short RNA fragments below 200 nucleotides like the
 
       Tissue/Cells Advanced Kit by QIAGEN to ensure the extraction of short RNA fragments below 200 nucleotides like the
       fgRNA.<br>
+
       fgRNA.<br/>
  
 
       When the extraction of the RNA was successful, reverse transcription into cDNA is started, followed up by a qPCR. Each
 
       When the extraction of the RNA was successful, reverse transcription into cDNA is started, followed up by a qPCR. Each
Line 454: Line 466:
 
       place when no processing has taken place into fgRNAs.
 
       place when no processing has taken place into fgRNAs.
 
     </p>
 
     </p>
  </section>
+
</section>
  <section id="5">
+
<section id="5">
    <h1>5. References</h1>
+
<h1>5. References</h1>
    <p>Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. <i>Science</i> <b>337</b>, 816–821. <a href="https://doi.org/10.1126/science.1225829" target="_blank">https://doi.org/10.1126/science.1225829</a>.</p>
+
<p>Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. <i>Science</i> <b>337</b>, 816–821. <a href="https://doi.org/10.1126/science.1225829" target="_blank">https://doi.org/10.1126/science.1225829</a>.</p>
 
+
<p>Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M. M., Horng, J. E., Malagon-Lopez, J., Scarfò, I., Maus, M. V., Pinello, L., Aryee, M. J., and Joung, J. K. (2019). Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. <i>Nature Biotechnology</i> <b>37</b>, 276–282. <a href="https://doi.org/10.1038/s41587-018-0011-0" target="_blank">https://doi.org/10.1038/s41587-018-0011-0</a>.</p>
    <p>Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M. M., Horng, J. E., Malagon-Lopez, J., Scarfò, I., Maus, M. V., Pinello, L., Aryee, M. J., and Joung, J. K. (2019). Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. <i>Nature Biotechnology</i> <b>37</b>, 276–282. <a href="https://doi.org/10.1038/s41587-018-0011-0" target="_blank">https://doi.org/10.1038/s41587-018-0011-0</a>.</p>
+
<p>Koonin, E. V., Gootenberg, J. S., and Abudayyeh, O. O. (2023). Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. <i>Biochemistry</i> <b>62</b>, 3465–3487. <a href="https://doi.org/10.1021/acs.biochem.3c00159" target="_blank">https://doi.org/10.1021/acs.biochem.3c00159</a>.</p>
   
+
<p>Kweon, J., Jang, A.-H., Kim, D.-e., Yang, J. W., Yoon, M., Rim Shin, H., Kim, J.-S., and Kim, Y. (2017). Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. <i>Nature Communications</i> <b>8</b>. <a href="https://doi.org/10.1038/s41467-017-01650-w" target="_blank">https://doi.org/10.1038/s41467-017-01650-w</a>.</p>
    <p>Koonin, E. V., Gootenberg, J. S., and Abudayyeh, O. O. (2023). Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. <i>Biochemistry</i> <b>62</b>, 3465–3487. <a href="https://doi.org/10.1021/acs.biochem.3c00159" target="_blank">https://doi.org/10.1021/acs.biochem.3c00159</a>.</p>
+
<p>Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013). RNA-Guided Human Genome Engineering via Cas9. <i>Science</i> <b>339</b>, 823–826. <a href="https://doi.org/10.1126/science.1232033" target="_blank">https://doi.org/10.1126/science.1232033</a>.</p>
   
+
<p>Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R., Zhang, F., and Nureki, O. (2014). Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. <i>Cell</i> <b>156</b>, 935–949. <a href="https://doi.org/10.1016/j.cell.2014.02.001" target="_blank">https://doi.org/10.1016/j.cell.2014.02.001</a>.</p>
    <p>Kweon, J., Jang, A.-H., Kim, D.-e., Yang, J. W., Yoon, M., Rim Shin, H., Kim, J.-S., and Kim, Y. (2017). Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. <i>Nature Communications</i> <b>8</b>. <a href="https://doi.org/10.1038/s41467-017-01650-w" target="_blank">https://doi.org/10.1038/s41467-017-01650-w</a>.</p>
+
<p>Pacesa, M., Pelea, O., and Jinek, M. (2024). Past, present, and future of CRISPR genome editing technologies. <i>Cell</i> <b>187</b>, 1076–1100. <a href="https://doi.org/10.1016/j.cell.2024.01.042" target="_blank">https://doi.org/10.1016/j.cell.2024.01.042</a>.</p>
   
+
<p>Paul, B., and Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. <i>Biomedical Journal</i> <b>43</b>, 8–17. <a href="https://doi.org/10.1016/j.bj.2019.10.005" target="_blank">https://doi.org/10.1016/j.bj.2019.10.005</a>.</p>
    <p>Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013). RNA-Guided Human Genome Engineering via Cas9. <i>Science</i> <b>339</b>, 823–826. <a href="https://doi.org/10.1126/science.1232033" target="_blank">https://doi.org/10.1126/science.1232033</a>.</p>
+
<p>Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., and Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. <i>Nature</i> <b>507</b>, 62–67. <a href="https://doi.org/10.1038/nature13011" target="_blank">https://doi.org/10.1038/nature13011</a>.</p>
   
+
<p>Wu, T., Cao, Y., Liu, Q., Wu, X., Shang, Y., Piao, J., Li, Y., Dong, Y., Liu, D., Wang, H., Liu, J., &amp; Ding, B. (2022). Genetically Encoded Double-Stranded DNA-Based Nanostructure Folded by a Covalently Bivalent CRISPR/dCas System. <i>Journal of the American Chemical Society</i>, <b>144</b>(14), 6575-6582. <a href="https://doi.org/10.1021/jacs.2c01760" target="_blank">https://doi.org/10.1021/jacs.2c01760</a>.</p>
    <p>Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R., Zhang, F., and Nureki, O. (2014). Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. <i>Cell</i> <b>156</b>, 935–949. <a href="https://doi.org/10.1016/j.cell.2014.02.001" target="_blank">https://doi.org/10.1016/j.cell.2014.02.001</a>.</p>
+
<p>Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., and Zhang, F. (2015). Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. <i>Cell</i> <b>163</b>, 759–771. <a href="https://doi.org/10.1016/j.cell.2015.09.038" target="_blank">https://doi.org/10.1016/j.cell.2015.09.038</a>.</p>
   
+
</section>
    <p>Pacesa, M., Pelea, O., and Jinek, M. (2024). Past, present, and future of CRISPR genome editing technologies. <i>Cell</i> <b>187</b>, 1076–1100. <a href="https://doi.org/10.1016/j.cell.2024.01.042" target="_blank">https://doi.org/10.1016/j.cell.2024.01.042</a>.</p>
+
</section></html>
   
+
    <p>Paul, B., and Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. <i>Biomedical Journal</i> <b>43</b>, 8–17. <a href="https://doi.org/10.1016/j.bj.2019.10.005" target="_blank">https://doi.org/10.1016/j.bj.2019.10.005</a>.</p>
+
   
+
    <p>Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., and Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. <i>Nature</i> <b>507</b>, 62–67. <a href="https://doi.org/10.1038/nature13011" target="_blank">https://doi.org/10.1038/nature13011</a>.</p>
+
   
+
    <p>Wu, T., Cao, Y., Liu, Q., Wu, X., Shang, Y., Piao, J., Li, Y., Dong, Y., Liu, D., Wang, H., Liu, J., & Ding, B. (2022). Genetically Encoded Double-Stranded DNA-Based Nanostructure Folded by a Covalently Bivalent CRISPR/dCas System. <i>Journal of the American Chemical Society</i>, <b>144</b>(14), 6575-6582. <a href="https://doi.org/10.1021/jacs.2c01760" target="_blank">https://doi.org/10.1021/jacs.2c01760</a>.</p>
+
   
+
    <p>Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., and Zhang, F. (2015). Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. <i>Cell</i> <b>163</b>, 759–771. <a href="https://doi.org/10.1016/j.cell.2015.09.038" target="_blank">https://doi.org/10.1016/j.cell.2015.09.038</a>.</p>
+
   
+
  </section>
+
  </body>
+
 
+
</html>
+

Revision as of 07:23, 2 October 2024

BBa_K5237014

fgRNA processing casette

Incorporating Cas12a into our Cas staple design allows us to utilize the ability of processing its own pre-crRNA by recognizing the hairpin structures of the scaffolds. The cutting of the pre-crRNA into crRNA happens upstream of the scaffold, suggesting the Cas12a to be able to process a CRISPR-array of fgRNA, while maintaining functionality.

 



The PICasSO Toolbox
Figure 1: How our part collection can be used to engineer new staples


While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the 3D spatial organization of DNA is well-known to be an important layer of information encoding in particular in eukaryotes, playing a crucial role in gene regulation and hence cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the genomic spatial architecture are limited, hampering the exploration of 3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular toolbox for rationally engineering genome 3D architectures in living cells, based on various DNA-binding proteins.

The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using engineered "protein staples" in living cells. This enables researchers to recreate naturally occurring alterations of 3D genomic interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for artificial gene regulation and cell function control. Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic loci into spatial proximity. To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either at the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are referred to as protein- or Cas staples, respectively. Beyond its versatility with regard to the staple constructs themselves, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples in vitro and in vivo. Notably, the PICasSO toolbox was developed in a design-build-test-learn engineering cycle closely intertwining wet lab experiments and computational modeling and iterated several times, yielding a collection of well-functioning and -characterized parts.

At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding proteins include our finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as "half staples" that can be combined by scientists to compose entirely new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for successful stapling and can be further engineered to create alternative, simpler, and more compact staples.
(ii) As functional elements, we list additional parts that enhance and expand the functionality of our Cas and Basic staples. These consist of staples dependent on cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific, dynamic stapling in vivo. We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into target cells, including mammalian cells, with our new interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that underlie our custom readout systems. These include components of our established FRET-based proximity assay system, enabling users to confirm accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a luciferase reporter, which allows for straightforward experimental assessment of functional enhancer hijacking events in mammalian cells.

The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome engineering.

Our part collection includes:

DNA-Binding Proteins: Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions in vivo
BBa_K5237000 Fusion Guide RNA Entry Vector MbCas12a-SpCas9 Entry vector for simple fgRNA cloning via SapI
BBa_K5237001 Staple Subunit: dMbCas12a-Nucleoplasmin NLS Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
BBa_K5237002 Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
BBa_K5237003 Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into close proximity
BBa_K5237004 Staple Subunit: Oct1-DBD Staple subunit that can be combined to form a functional staple, for example with TetR.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237005 Staple Subunit: TetR Staple subunit that can be combined to form a functional staple, for example with Oct1.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237006 Simple Staple: TetR-Oct1 Functional staple that can be used to bring two DNA strands in close proximity
BBa_K5237007 Staple Subunit: GCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237008 Staple Subunit: rGCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237009 Mini Staple: bGCN4 Assembled staple with minimal size that can be further engineered
Functional Elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications
BBa_K5237010 Cathepsin B-cleavable Linker: GFLG Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples
BBa_K5237011 Cathepsin B Expression Cassette Expression cassette for the overexpression of cathepsin B
BBa_K5237012 Caged NpuN Intein A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237013 Caged NpuC Intein A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237014 Fusion Guide RNA Processing Casette Processing cassette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprogramming
BBa_K5237015 Intimin anti-EGFR Nanobody Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for large constructs
BBa_K4643003 IncP Origin of Transfer Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery
Readout Systems: FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and mammalian cells
BBa_K5237016 FRET-Donor: mNeonGreen-Oct1 FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237017 FRET-Acceptor: TetR-mScarlet-I Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237018 Oct1 Binding Casette DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay
BBa_K5237019 TetR Binding Cassette DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay
BBa_K5237020 Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
BBa_K5237021 NLS-Gal4-VP64 Trans-activating enhancer, that can be used to simulate enhancer hijacking
BBa_K5237022 mCherry Expression Cassette: UAS, minimal Promoter, mCherry Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker
BBa_K5237023 Oct1 - 5x UAS Binding Casette Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay
BBa_K5237024 TRE-minimal Promoter- Firefly Luciferase Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence readout for simulated enhancer hijacking

1. Sequence overview

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 276
    Illegal XhoI site found at 305
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

2. Usage and Biology

2.1 The CRISPR/Cas System as a Gene Editing Tool

Figure 2: The CRISPR/Cas system (adapted from Pacesa et al. (2024)) A and B, schematic structure of Cas9 and Cas12a with their sgRNA/crRNA, sitting on a DNA strand with the PAM. The spacer sequence forms base pairings with the dsDNA. In case of Cas9 the spacer is located at the 5' prime end, for Cas12a at the 3' end of the gRNA. The scaffold of the gRNA forms a specific secondary structure enabling it to bind to the Cas protein. The cut sites by the cleaving domains, RuvC and HNH, are symbolized by the scissors

In 2012, Jinek et al. discovered the use of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas system to induce double-strand breaks in DNA. Since then, the system has been well established as a tool for genome editing. The CRISPR/Cas system, which originates from the bacterial immune system, is constituted by a ribonucleoprotein complex. For class 1 CRISPR systems, the RNA is complexed by multiple Cas proteins, whereas class 2 systems consist of a singular protein and RNA. The class 2 type II system describes all ribonucleoprotein (RNP) complexes with Cas9 (Pacesa et al., 2024). They include a CRISPR RNA (crRNA), which specifies the target with a 20 nucleotide (nt) spacer sequence, and a transactivating CRISPR RNA (tracrRNA), which induces the processing by the Cas protein (Jinek et al., 2012) (see figure 1A). Furthermore, a specific three nucleotide sequence (NGG) on the 3' end in the targeted DNA is needed for binding and cleavage. This is referred to as the protospacer adjacent motif (PAM) (Sternberg et al., 2014). The most commonly used Cas9 protein is SpCas9 or SpyCas9, which originates from Streptococcus pyogenes (Pacesa et al., 2024).

A significant enhancement of this system was the introduction of single guide RNA (sgRNA)s, which combine the functions of a tracrRNA and crRNA (Mali et al., 2013). Moreover, Cong (2013) established precise targeting of human endogenous loci by designing the 20 nt spacer sequence accordingly.

2.2 Differences between Cas9 and Cas12a

Over the following years, further CRISPR/Cas systems have been discovered, including the Cpf1 system, which has been classified as Cas12a since then (Zetsche et al., 2015). Cas12a forms a class 2 type V system with its RNA, that in comparison to the type II systems, only requires a crRNA for targeting and activation. Cas12a is capable of processing the precursor crRNA into crRNA independently, whereas Cas9 requires the RNase III enzyme and tracrRNA for this process (Paul and Montoya, 2020). This crRNA is often also referred to as a guide RNA (gRNA). However, the stem loop, that is formed when binding the Cas protein is structurally distinct to the Cas9 gRNA and positioned on the 5' side of the crRNA (see figure 1B). Similarly, the PAM (TTTV) is also on the 5' side (Pacesa et al., 2024). Cas9 possesses RuvC and HNH domains that are catalytically active, each of which cleaves one of the DNA strands at the same site, resulting in the formation of blunt end cuts (Nishimasu et al., 2014). Cas12a possesses one RuvC-like domain that creates staggered cuts with overhangs that are about 5nt long (Paul and Montoya, 2020).

2.3 Dead Cas Proteins and their Application

Figure 3: pre-fgRNA maturation by Cas12a Depicted are the stages of a pre-fgRNA being expressed from the genome, cut by Cas12a into fgRNA molecules forming a RNP with the Cas12a.

Specific mutations of these domains result in catalytic inactivity and therefore allow for the creation of nickases, that only cut one of the DNA strands, or completely inactive Cas proteins (Koonin et al., 2023) (Kleinstiver et al., 2019). These are referred to as dead Cas proteins or dCas9 and dCas12a. Kweon et al. (2017) further expanded the ways in which the CRISPR/Cas system could be used by introducing the concept of fusion guide RNA (fgRNA)s. By fusing the 3' end of a Cas12a crRNA to the 5' end of a Cas9 gRNA, the newly created fgRNA could be used by both proteins independently for either multiplex genome editing or transcriptional regulation and genome editing in parallel, while allowing for Cas12a to process the pre-fgRNA into individual fgRNA molecules (Fig. 3). This allows for even greater multiplexing.

3. Assembly and part evolution

For the cloning we employed the fgRNA entry vector (BBa_K5237000) resulting in a GGA using SapI with the insert being ordered as a DNA fragment.
Cloning via this strategy resulted in the designed and planned out construct being confirmed by sanger sequencing (figure 4)

Figure 4: Positive cloning of the desired construct confirmed by Sanger sequencing. Two clones were picked and mini prepped after 16 h hours and send to sequencing. Both clones had positive results and clean reads.

4. Results

Due to time constraints we are not able to show data, nevertheless we are actively working on this assay.
The construct will be transfected into HEK293T cells together with a plasmid containing Cas12a and with a plasmid containing a fusion Cas (BBa_K5237003). The experiment will be carried out in technical replicates on a 6-well plate.
Lysis of the cells will occur 36 hours after transfection. Immediate RNA extraction will be performed with the miRNeasy Tissue/Cells Advanced Kit by QIAGEN to ensure the extraction of short RNA fragments below 200 nucleotides like the fgRNA.
When the extraction of the RNA was successful, reverse transcription into cDNA is started, followed up by a qPCR. Each sample is screened with SYBR green labeled qPCR primers once for a housekeeper gene and for a sequence incorporated into the pre-fgRNA. Proper amplification between the chosen sites within the pre-fgRNA processing cassette can only take place when no processing has taken place into fgRNAs.

5. References

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337, 816–821. https://doi.org/10.1126/science.1225829.

Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M. M., Horng, J. E., Malagon-Lopez, J., Scarfò, I., Maus, M. V., Pinello, L., Aryee, M. J., and Joung, J. K. (2019). Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology 37, 276–282. https://doi.org/10.1038/s41587-018-0011-0.

Koonin, E. V., Gootenberg, J. S., and Abudayyeh, O. O. (2023). Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry 62, 3465–3487. https://doi.org/10.1021/acs.biochem.3c00159.

Kweon, J., Jang, A.-H., Kim, D.-e., Yang, J. W., Yoon, M., Rim Shin, H., Kim, J.-S., and Kim, Y. (2017). Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nature Communications 8. https://doi.org/10.1038/s41467-017-01650-w.

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013). RNA-Guided Human Genome Engineering via Cas9. Science 339, 823–826. https://doi.org/10.1126/science.1232033.

Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R., Zhang, F., and Nureki, O. (2014). Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell 156, 935–949. https://doi.org/10.1016/j.cell.2014.02.001.

Pacesa, M., Pelea, O., and Jinek, M. (2024). Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100. https://doi.org/10.1016/j.cell.2024.01.042.

Paul, B., and Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. Biomedical Journal 43, 8–17. https://doi.org/10.1016/j.bj.2019.10.005.

Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., and Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67. https://doi.org/10.1038/nature13011.

Wu, T., Cao, Y., Liu, Q., Wu, X., Shang, Y., Piao, J., Li, Y., Dong, Y., Liu, D., Wang, H., Liu, J., & Ding, B. (2022). Genetically Encoded Double-Stranded DNA-Based Nanostructure Folded by a Covalently Bivalent CRISPR/dCas System. Journal of the American Chemical Society, 144(14), 6575-6582. https://doi.org/10.1021/jacs.2c01760.

Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., and Zhang, F. (2015). Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 163, 759–771. https://doi.org/10.1016/j.cell.2015.09.038.