Difference between revisions of "Part:BBa K5121011"
Mdepaulis800 (Talk | contribs) |
Mdepaulis800 (Talk | contribs) |
||
Line 3: | Line 3: | ||
<partinfo>BBa_K5121011 short</partinfo> | <partinfo>BBa_K5121011 short</partinfo> | ||
− | + | == Biology == | |
Refractile bodies, known as R bodies, are ribbon-like protein complexes produced by certain strains of bacteria. Five classes of R bodies have been described — this part specifically encodes a modified type 51 R body containing four genes; rebA, rebB, rebC, and rebD. rebA and rebB constitute the primary structural components of R bodies, while rebC is thought to aid in the polymerisation process — the function of rebD remains unknown (Heruth et al., 1994). Under basic conditions, R bodies exist in a coiled-up conformation but will extend in a telescopic fashion under acidic conditions (Heruth et al., 1994). In nature, R bodies are produced by bacterial endosymbionts of some Paramecia. Also referred to as kappa particles, these bacteria constitute the genus Caedibacter (Beier et al., 2002). These bacterial endosymbionts confer a killer trait to host paramecia — when released and taken up by sensitive paramecia, the bacteria are exposed to an acidifying environment in the endosome. These conditions cause the extension of R bodies inside the bacteria, rupturing them and the endosome to release a toxin to kill the host cell (Pond et al., 1989). Their ability to burst endosomes make R bodies appealing candidates for use in drug delivery, as they could hold the key to solving the endosomal escape problem. | Refractile bodies, known as R bodies, are ribbon-like protein complexes produced by certain strains of bacteria. Five classes of R bodies have been described — this part specifically encodes a modified type 51 R body containing four genes; rebA, rebB, rebC, and rebD. rebA and rebB constitute the primary structural components of R bodies, while rebC is thought to aid in the polymerisation process — the function of rebD remains unknown (Heruth et al., 1994). Under basic conditions, R bodies exist in a coiled-up conformation but will extend in a telescopic fashion under acidic conditions (Heruth et al., 1994). In nature, R bodies are produced by bacterial endosymbionts of some Paramecia. Also referred to as kappa particles, these bacteria constitute the genus Caedibacter (Beier et al., 2002). These bacterial endosymbionts confer a killer trait to host paramecia — when released and taken up by sensitive paramecia, the bacteria are exposed to an acidifying environment in the endosome. These conditions cause the extension of R bodies inside the bacteria, rupturing them and the endosome to release a toxin to kill the host cell (Pond et al., 1989). Their ability to burst endosomes make R bodies appealing candidates for use in drug delivery, as they could hold the key to solving the endosomal escape problem. | ||
+ | |||
+ | =test= | ||
+ | ==test== | ||
+ | ===test=== | ||
+ | ====test==== | ||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here |
Revision as of 04:41, 2 October 2024
Reb1 Locus
Biology
Refractile bodies, known as R bodies, are ribbon-like protein complexes produced by certain strains of bacteria. Five classes of R bodies have been described — this part specifically encodes a modified type 51 R body containing four genes; rebA, rebB, rebC, and rebD. rebA and rebB constitute the primary structural components of R bodies, while rebC is thought to aid in the polymerisation process — the function of rebD remains unknown (Heruth et al., 1994). Under basic conditions, R bodies exist in a coiled-up conformation but will extend in a telescopic fashion under acidic conditions (Heruth et al., 1994). In nature, R bodies are produced by bacterial endosymbionts of some Paramecia. Also referred to as kappa particles, these bacteria constitute the genus Caedibacter (Beier et al., 2002). These bacterial endosymbionts confer a killer trait to host paramecia — when released and taken up by sensitive paramecia, the bacteria are exposed to an acidifying environment in the endosome. These conditions cause the extension of R bodies inside the bacteria, rupturing them and the endosome to release a toxin to kill the host cell (Pond et al., 1989). Their ability to burst endosomes make R bodies appealing candidates for use in drug delivery, as they could hold the key to solving the endosomal escape problem.
test
test
test
test
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 1481
Illegal NheI site found at 1543 - 21INCOMPATIBLE WITH RFC[21]Illegal BamHI site found at 1423
Illegal XhoI site found at 1721 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]