Difference between revisions of "Part:BBa K5439001"
(→Usage and Biology) |
(→Usage and Biology) |
||
Line 10: | Line 10: | ||
− | + | =Usage and Biology= | |
The enzyme chosen for the biopart was phytochelatin synthase (EC:2.3.2.15) as a detector for the presence of cadmium. This enzyme catalyzes the synthesis of glutathione (GSH) polymers, or phytochelatins (PCs). These molecules are the most studied chelators for the detoxification of heavy metals in plants, and they serve as high-affinity chelators for the detoxification of heavy metals such as cadmium, zinc, and nickel. PCs bind to these metals through their thiol groups and inactivate them, storing the PC-metal complex in the cytosol (in the case of plants) or in chloroplasts (in the case of algae or protists) (Rea, 2012; García-García, 2014). | The enzyme chosen for the biopart was phytochelatin synthase (EC:2.3.2.15) as a detector for the presence of cadmium. This enzyme catalyzes the synthesis of glutathione (GSH) polymers, or phytochelatins (PCs). These molecules are the most studied chelators for the detoxification of heavy metals in plants, and they serve as high-affinity chelators for the detoxification of heavy metals such as cadmium, zinc, and nickel. PCs bind to these metals through their thiol groups and inactivate them, storing the PC-metal complex in the cytosol (in the case of plants) or in chloroplasts (in the case of algae or protists) (Rea, 2012; García-García, 2014). |
Revision as of 21:58, 1 October 2024
TjPCs (phytochelatin synthase) coding sequence
Phytochelatin synthase coding sequence from Thlaspi japonicum. This gluthanione-γ-glutamylcysteinyltransferase posttranslationally synthesizes phytochelatins in the presence of heavy metals and gluthanione as a mechanism of heavy metal detoxification.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 181
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 31
Illegal BglII site found at 1440
Illegal XhoI site found at 1462 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Usage and Biology
The enzyme chosen for the biopart was phytochelatin synthase (EC:2.3.2.15) as a detector for the presence of cadmium. This enzyme catalyzes the synthesis of glutathione (GSH) polymers, or phytochelatins (PCs). These molecules are the most studied chelators for the detoxification of heavy metals in plants, and they serve as high-affinity chelators for the detoxification of heavy metals such as cadmium, zinc, and nickel. PCs bind to these metals through their thiol groups and inactivate them, storing the PC-metal complex in the cytosol (in the case of plants) or in chloroplasts (in the case of algae or protists) (Rea, 2012; García-García, 2014).
The PCs from Thlaspi japonicum has been selected as it has demonstrated that the presence of the gene TjPCs increases tolerance to Cadmium (Cd), and its synthesis of PCs can be of interest in Cd pollution problems (Mizuno et al., 2003).