Difference between revisions of "Part:BBa K5127004:Design"

 
Line 16: Line 16:
  
 
===References===
 
===References===
 +
 +
d’Oelsnitz, S., Stofel, S. K., Love, J. D., & Ellington, A. D. (2024). Snowprint: a predictive tool for genetic biosensor discovery. Communications Biology, 7(1). https://doi.org/10.1038/s42003-024-05849-8
 +
 +
Liang, C., Xiong, D., Zhang, Y., Mu, S., & Tang, S.-Y. (2014). Development of a novel uric-acid-responsive regulatory system in Escherichia coli. Applied Microbiology and Biotechnology, 99(5), 2267–2275. https://doi.org/10.1007/s00253-014-6290-6
 +
 +
Wei, W., Liu, Y., Hou, Y., Cao, S., Chen, Z., Zhang, Y., Cai, X., Yan, Q., Li, Z., Yuan, Y., Wang, G., Zheng, X., & Hao, H. (2023). Psychological stress-induced microbial metabolite indole-3-acetate disrupts intestinal cell lineage commitment. Cell Metabolism. https://doi.org/10.1016/j.cmet.2023.12.026

Revision as of 18:59, 1 October 2024


iacR


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

This part is codon optimized for Goldengate assembly (BsaI, BsmBI, BbsI) and expression in E.coli.


Source

Genome of Pseudomonas putida

References

d’Oelsnitz, S., Stofel, S. K., Love, J. D., & Ellington, A. D. (2024). Snowprint: a predictive tool for genetic biosensor discovery. Communications Biology, 7(1). https://doi.org/10.1038/s42003-024-05849-8

Liang, C., Xiong, D., Zhang, Y., Mu, S., & Tang, S.-Y. (2014). Development of a novel uric-acid-responsive regulatory system in Escherichia coli. Applied Microbiology and Biotechnology, 99(5), 2267–2275. https://doi.org/10.1007/s00253-014-6290-6

Wei, W., Liu, Y., Hou, Y., Cao, S., Chen, Z., Zhang, Y., Cai, X., Yan, Q., Li, Z., Yuan, Y., Wang, G., Zheng, X., & Hao, H. (2023). Psychological stress-induced microbial metabolite indole-3-acetate disrupts intestinal cell lineage commitment. Cell Metabolism. https://doi.org/10.1016/j.cmet.2023.12.026