Difference between revisions of "Part:BBa K5237011"
Line 82: | Line 82: | ||
<section> | <section> | ||
− | <p><br><br></p> | + | <p><br><br></p> |
<font size="5"><b>The PICasSO Toolbox </b> </font> | <font size="5"><b>The PICasSO Toolbox </b> </font> | ||
<div class="thumb" style="margin-top:10px;"></div> | <div class="thumb" style="margin-top:10px;"></div> | ||
− | + | <div class="thumbinner" style="width:550px"><img alt="" | |
− | + | src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" | |
− | + | style="width:99%;" class="thumbimage"> | |
− | + | <div class="thumbcaption"> | |
+ | <i><b>Figure 1: How our part collection can be used to engineer new staples</b></i> | ||
</div> | </div> | ||
</div> | </div> | ||
− | + | </div> | |
+ | |||
<p> | <p> | ||
<br> | <br> | ||
− | Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene regulation, | + | Next to the well-studied linear DNA sequence, the <b>3D spatial organization</b> of DNA plays a crucial role in |
− | cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the | + | gene regulation, |
− | 3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful | + | cell fate, disease development and more. However, the <b>tools</b> to precisely manipulate this genomic |
− | toolbox based on various DNA-binding proteins to address this issue. | + | architecture <b>remain limited</b>, rendering it challenging to explore the full potential of the |
+ | 3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a <b>powerful | ||
+ | molecular toolbox</b> based on various DNA-binding proteins to address this issue. | ||
</p> | </p> | ||
<p> | <p> | ||
The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and | The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and | ||
− | re-programming | + | <b>re-programming |
− | of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic | + | of DNA-DNA interactions</b> using protein staples in living cells, enabling researchers to recreate natural 3D genomic |
interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation. | interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation. | ||
− | Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and | + | Specifically, the fusion of two DNA binding proteins enables to artifically bring distant genomic loci into |
+ | proximty. | ||
+ | To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either on | ||
+ | the protein or the guide RNA level. These complexes are reffered to as protein- or Cas staples. Beyond its | ||
+ | versatility, PICasSO includes robust assay systems to support the engineering, optimization, and | ||
testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include | testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include | ||
parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts. | parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts. | ||
</p> | </p> | ||
− | <p>At its heart, the PICasSO part collection consists of three categories. <br><b>(i)</b> Our <b>DNA-binding proteins</b> | + | <p>At its heart, the PICasSO part collection consists of three categories. <br><b>(i)</b> Our <b>DNA-binding |
+ | proteins</b> | ||
include our | include our | ||
finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely | finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely | ||
new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling | new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling | ||
and can be further engineered to create alternative, simpler and more compact staples. <br> | and can be further engineered to create alternative, simpler and more compact staples. <br> | ||
− | <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and Basic staples. These | + | <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and |
+ | Basic staples. These | ||
consist of | consist of | ||
protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>. | protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>. | ||
− | Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our | + | Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs |
+ | with our | ||
interkingdom conjugation system. <br> | interkingdom conjugation system. <br> | ||
− | <b>(iii)</b> As the final category of our collection, we provide parts that support the use of our <b>custom readout | + | <b>(iii)</b> As the final category of our collection, we provide parts that support the use of our <b>custom |
+ | readout | ||
systems</b>. These include components of our established FRET-based proximity assay system, enabling users to | systems</b>. These include components of our established FRET-based proximity assay system, enabling users to | ||
confirm | confirm | ||
accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional | accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional | ||
− | readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking in mammalian cells. | + | readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking |
+ | in mammalian cells. | ||
</p> | </p> | ||
<p> | <p> | ||
− | The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark style="background-color: #FFD700; color: black;">The highlighted parts showed | + | The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark |
− | + | style="background-color: #FFD700; color: black;">The highlighted parts showed | |
+ | exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other parts in | ||
+ | the | ||
collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their | collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their | ||
own custom Cas staples, enabling further optimization and innovation.<br> | own custom Cas staples, enabling further optimization and innovation.<br> | ||
Line 161: | Line 176: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td> | ||
<td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td> | <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td> | ||
− | <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into | + | <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close |
+ | proximity | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 216: | Line 232: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td> | ||
<td>Caged NpuN Intein</td> | <td>Caged NpuN Intein</td> | ||
− | <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation. Can be used to create functionalized staples | + | <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation. |
+ | Can be used to create functionalized staples | ||
units</td> | units</td> | ||
</tr> | </tr> | ||
Line 222: | Line 239: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td> | ||
<td>Caged NpuC Intein</td> | <td>Caged NpuC Intein</td> | ||
− | <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation. Can be used to create functionalized staples | + | <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation. |
+ | Can be used to create functionalized staples | ||
units</td> | units</td> | ||
</tr> | </tr> | ||
Line 228: | Line 246: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td> | ||
<td>fgRNA processing casette</td> | <td>fgRNA processing casette</td> | ||
− | <td>Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprograming</td> | + | <td>Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D |
+ | genome reprograming</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
Line 239: | Line 258: | ||
<td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td> | ||
<td>incP origin of transfer</td> | <td>incP origin of transfer</td> | ||
− | <td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery</td> | + | <td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of |
+ | delivery</td> | ||
</tr> | </tr> | ||
</tbody> | </tbody> | ||
Line 249: | Line 269: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td> | ||
<td>FRET-Donor: mNeonGreen-Oct1</td> | <td>FRET-Donor: mNeonGreen-Oct1</td> | ||
− | <td>FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize DNA-DNA | + | <td>FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize |
+ | DNA-DNA | ||
proximity</td> | proximity</td> | ||
</tr> | </tr> |
Revision as of 17:27, 1 October 2024
Cathepsin B Expression Cassette
Cathepsin B is a lysosomal protease present in the cytosol of various cancer types. To enhance its nuclear functionality, cathepsin B (BBa_K5237100) was fused to the SV40 nuclear localization sequence (BBa_K2549054) via a GGS linker, enabling nuclear import and precise subcellular targeting. We overexpressed this composite part in HEK293T cells to investigate its ability to cleave different Gal4-Linker-VP64 constructs (BBa_K5237020) using a fluorescence readout assay. We successfully demonstrated that the GFLG linker was efficiently cleaved by cathepsin B in vivo. Furthermore, we showed that wild-type cathepsin B matured into its active forms when overexpressed in HEK293T cells. Together, these findings enable the functionalization of our PICasSO system for a wide range of therapeutic and synthetic biology applications.
Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in
gene regulation,
cell fate, disease development and more. However, the tools to precisely manipulate this genomic
architecture remain limited, rendering it challenging to explore the full potential of the
3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful
molecular toolbox based on various DNA-binding proteins to address this issue.
The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation. Specifically, the fusion of two DNA binding proteins enables to artifically bring distant genomic loci into proximty. To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either on the protein or the guide RNA level. These complexes are reffered to as protein- or Cas staples. Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples, ensuring functionality in vitro and in vivo. We took special care to include parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts.
At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding
proteins
include our
finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling
and can be further engineered to create alternative, simpler and more compact staples.
(ii) As functional elements, we list additional parts that enhance the functionality of our Cas and
Basic staples. These
consist of
protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling in vivo.
Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs
with our
interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that support the use of our custom
readout
systems. These include components of our established FRET-based proximity assay system, enabling users to
confirm
accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking
in mammalian cells.
The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed
exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in
the
collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
own custom Cas staples, enabling further optimization and innovation.
Our part collection includes:
DNA-binding proteins: The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring easy assembly. | ||
BBa_K5237000 | fgRNA Entry vector MbCas12a-SpCas9 | Entryvector for simple fgRNA cloning via SapI |
BBa_K5237001 | Staple subunit: dMbCas12a-Nucleoplasmin NLS | Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple |
BBa_K5237002 | Staple subunit: SV40 NLS-dSpCas9-SV40 NLS | Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple |
BBa_K5237003 | Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS | Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close proximity |
BBa_K5237004 | Staple subunit: Oct1-DBD | Staple subunit that can be combined to form a functional staple, for example with TetR. Can also be combined with a fluorescent protein as part of the FRET proximity assay |
BBa_K5237005 | Staple subunit: TetR | Staple subunit that can be combined to form a functional staple, for example with Oct1. Can also be combined with a fluorescent protein as part of the FRET proximity assay |
BBa_K5237006 | Simple staple: TetR-Oct1 | Functional staple that can be used to bring two DNA strands in close proximity |
BBa_K5237007 | Staple subunit: GCN4 | Staple subunit that can be combined to form a functional staple, for example with rGCN4 |
BBa_K5237008 | Staple subunit: rGCN4 | Staple subunit that can be combined to form a functional staple, for example with rGCN4 |
BBa_K5237009 | Mini staple: bGCN4 | Assembled staple with minimal size that can be further engineered | Functional elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications |
BBa_K5237010 | Cathepsin B-cleavable Linker: GFLG | Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples |
BBa_K5237011 | Cathepsin B Expression Cassette | Expression Cassette for the overexpression of cathepsin B |
BBa_K5237012 | Caged NpuN Intein | A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation. Can be used to create functionalized staples units |
BBa_K5237013 | Caged NpuC Intein | A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation. Can be used to create functionalized staples units |
BBa_K5237014 | fgRNA processing casette | Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprograming |
BBa_K5237015 | Intimin anti-EGFR Nanobody | Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large constructs |
BBa_K4643003 | incP origin of transfer | Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery | Readout Systems: FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells enabling swift testing and easy development for new systems |
BBa_K5237016 | FRET-Donor: mNeonGreen-Oct1 | FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize DNA-DNA proximity |
BBa_K5237017 | FRET-Acceptor: TetR-mScarlet-I | Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize DNA-DNA proximity |
BBa_K5237018 | Oct1 Binding Casette | DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay |
BBa_K5237019 | TetR Binding Cassette | DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay | BBa_K5237020 | Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 | Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker |
BBa_K5237021 | NLS-Gal4-VP64 | Trans-activating enhancer, that can be used to simulate enhancer hijacking | BBa_K5237022 | mCherry Expression Cassette: UAS, minimal Promotor, mCherry | Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker |
BBa_K5237023 | Oct1 - 5x UAS binding casette | Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay |
BBa_K5237024 | TRE-minimal promoter- firefly luciferase | Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for simulated enhancer hijacking |
1. Sequence Overview
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 656
Illegal BglII site found at 755 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 86
Illegal NgoMIV site found at 157
Illegal NgoMIV site found at 1009
Illegal AgeI site found at 841 - 1000COMPATIBLE WITH RFC[1000]
2. Usage and Biology
Cathepsin B is a cysteine protease typically found in lysosomes or secreted outside the cell, where it degrades proteins of the extracellular matrix (Ruan et al., 2015). Its significance in cancer progression is well-documented, with elevated levels observed in cancerous tissues compared to noncancerous tissues (Ruan et al., 2015). Given its important role in tumor progression, cathepsin B is considered a potential therapeutic target (Ruan et al., 2015) or prodrug-activating enzyme (Zhong et al., 2013). To explore the therapeutic potential of our PICasSO platform, we designed protein-based DNA staples that respond to the overexpression of cathepsin B in cancerous tissues. We were able to demonstrate doxorubicin-dependent cathepsin B cleavage of one out of five documented linkers (Jin et al., 2022; Shim et al., 2022; Wang et al., 2024) in HEK293T cells.
To enhance the functionality of cathepsin B within the nucleus, we fused it to the SV40 nuclear localization sequence (NLS), a short peptide derived from the simian virus 40 (SV40) large T-antigen. The SV40 NLS contains a cluster of basic amino acids, which are recognized by importins, allowing the tagged protein to be transported through the nuclear pore complex into the nucleus (Yoneda, 1997). This tool is commonly used to ensure the nuclear localization of recombinant proteins in eukaryotic cells (Lu et al., 2021). By directing cathepsin B to the nucleus, we aim to enhance its precision in cellular targeting.
3. Assembly and Part Evolution
The protein sequence of human cathepsin B was obtained from UniProt (P07858), and an SV40 nuclear localization sequence (BBa_K2549054) was connected to the N-Terminus via a GGS linker. After in silico cloning, the corresponding nucleotide sequence was optimized for expression in human cells (Codon Optimization Tool from Integrated DNA Technologies, Inc.) and purchased as a gBlock. Restriction cloning was used to insert the gBlock into the mammalian expression vector pcDNA3.1. The plasmids were propagated in E. coli Top10 cells and used to transfect HEK293T cells.
4. Results
4.1 Mature Cathepsin B Is Expressed in HEK293T Cells
To achieve cathepsin B cleavage-induced Cas stapling, catalytically active cathepsin B needs to be expressed in the cytosol. Therefore, we investigated the expression of different cathepsin B constructs under different conditions in HEK293T cells. In addition to wild-type (wt) cathepsin B, we also cloned a truncated and mutated version of cathepsin B (Δ1-20, D22A, H110A, R116A) and compared protein expression of both constructs in doxorubicin-treated and untreated conditions.
Figure 2 shows a western blot of the wild-type (wt) version of cathepsin B as well as the truncated and mutated version of cathepsin B (Δ1-20, D22A, H110A, R116A). Cells of both cathepsin B versions were treated with 500 nM doxorubicin (dox) 24 hours post-transfection and incubated for additional 24 hours. For each condition, three replicates were blotted. We observed no differences in protein expression levels between the dox-treated and untreated wt versions of cathepsin B. For the truncated and mutated version of cathepsin B, however, only the untreated samples showed the corresponding band at approximately 36 kDa expected for this version of cathepsin B. Additionally, the bands of the truncated and mutated version appeared much weaker than the ones of the wt, indicating poorer protein expression. The household protein β-tubulin is visible in all samples at approximately 55 kDa. The wt cathepsin B additionally showed bands for pro-cathepsin B at approximately 42 kDa, a mature single-chain version of cathepsin B at approximately 33 kDa and a mature double-chain version at approximately 26 kDa.
4.2 mCherry and eGFP Can be Used as a Reporter System to Measure Cleavage Efficiency
In this experiment, mCherry and eGFP were evaluated as reporters to quantify the efficiency of cathepsin B-mediated cleavage of Gal4-Linker-VP64 constructs in HEK293T cells.
Figure 3 shows micrographs taken with a fluorescence microscope of three different conditions: the null control, the negative control and the test sample. Figure 4 shows the corresponding graphs. All samples were transfected with plasmids encoding eGFP and mCherry. The null control and the negative control were not transfected with the plasmid encoding cathepsin B. The null control was also not transfected with any of the plasmids encoding Gal4-Linker-VP64 constructs. The test sample was transfected with 30 ng of the plasmid encoding cathepsin B and with the plasmid encoding Gal4-GFLG-VP64. As expected, the null control exhibited no detectable mCherry signal, with corresponding fluorescence intensity measurements at baseline levels. Since no plasmid encoding a Gal4-V64 construct was transfected, mCherry overexpression via VP64 could not be induced. However, we observed a high fluorescence intensity for eGFP, indicating that the transfection was successful. The negative control showed strong signals of both mCherry and eGFP. Therefore, it can be assumed that the transfection was successful and that our mCherry readout system is functional. Interestingly, there are some cells which either seem to only express mCherry or eGFP and some cells that show no fluorescence signal. The test sample showed less eGFP and mCherry fluorescence compared to the negative control. We expected to observe reduced fluorescence intensity of mCherry, as the transfected cells would express cathepsin B, which cleaves the linker, thereby decreasing mCherry expression
4.3 The Peptide Linker GFLG Is Cleaved by Cathepsin B in Vivo
We performed a fluorescence readout assay in HEK293T cells to investigate cathepsin B cleavage of different peptide linkers. 24 hours after transfection, we added doxorubicin in a final concentration of 500 nM to the cell supernatant. Figure 5 shows the fluorescence intensity of mCherry for five different peptide linkers (GFLG, FFRG, FRRL, VA, FK). The negative control was not transfected with the plasmid encoding cathepsin B. We investigated two different test conditions, in which we either transfected 30 ng or 60 ng of the plasmid encoding cathepsin B. The fluorescence intensity of mCherry was normalized by the measured fluorescence intensity of eGFP in each condition. Additionally, the values for 30 ng and 60 ng cathepsin B were normalized against the corresponding negative controls. One data point for the VA linker, transfected with 60 ng of the plasmid encoding cathepsin B, was excluded due to severe deviation from the other values. We conducted a two-way analysis of variance (ANOVA) to assess the significance of the observed differences between the negative control and the test conditions for each linker. As the negative control did not contain the plasmid encoding cathepsin B, we expected the measured fluorescence intensity of mCherry to be the highest in these conditions. However, this was only observed for the GFLG and FK linkers. Contrary to our expectations, the fluorescence intensity of the negative control was the lowest out of the three conditions tested for the remaining linkers. It appears that the addition of the plasmid encoding cathepsin B increases mCherry fluorescence intensity when the linker is not cleaved. However, this increase is only significant for the FFRG linker in the 60 ng condition. For the GFLG linker, we observed significant decreases in fluorescence intensity between the negative control and both test conditions, with no difference between the 30 ng and 60 ng conditions. For the FK linker, no significant decreases in fluorescence intensity between the negative control and the test conditions were observed.
5. Conclusion
We overexpressed wild-type cathepsin B in HEK293T cells to study its maturation and activity in a cellular environment. Our findings revealed that cathepsin B successfully matured into its active forms when overexpressed, demonstrating its proteolytic functionality in vivo. By fusing cathepsin B to an SV40 nuclear localization sequence (NLS), we were able to target the protease to the nucleus, enhancing its subcellular localization and precision. Additionally, we showed that the GFLG linker was efficiently cleaved by cathepsin B, confirming its activity on peptide substrates. These results confirm the successful overexpression and activation of cathepsin B in human cells, laying the groundwork for its use in targeted therapeutic strategies and synthetic biology systems.
6. References
Gramespacher, J. A., Stevens, A. J., Nguyen, D. P., Chin, J. W., & Muir, T. W. (2017). Intein Zymogens: Conditional Assembly and Splicing of Split Inteins via Targeted Proteolysis. J Am Chem Soc, 139(24), 8074-8077. https://doi.org/10.1021/jacs.7b02618
Jin, C., EI-Sagheer, A. H., Li, S., Vallis, K. A., Tan, W., & Brown, T. (2022). Engineering Enzyme-Cleavable Oligonucleotides by Automated Solid-Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers. Angewandte Chemie International Edition, 61(13), e202114016. https://doi.org/10.1002/anie.202114016
Lu, J., Wu, T., Zhang, B., Liu, S., Song, W., Qiao, J. & Ruan, H. (2021). Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Communication and Signaling 19(60). https://doi.org/10.1186/s12964-021-00741-y
Ruan, H., Hao, S., Young, P., & Zhang, H. (2015). Targeting Cathepsin B for Cancer Therapies. Horiz Cancer Res, 56, 23-40.
Shim, N., Jeon, S. I., Yang, S., Park, J. Y., Jo, M., Kim, J., Choi, J., Yun, W. S., Kim, J., Lee, Y., Shim, M. K., Kim, Y., & Kim, K. (2022). Comparative study of cathepsin B-cleavable linkers for the optimal design of cathepsin B-specific doxorubicin prodrug nanoparticles for targeted cancer therapy. Biomaterials, 289, 121806. https://doi.org/10.1016/j.biomaterials.2022.121806
Wang, J., Liu, M., Zhang, X., Wang, X., Xiong, M., & Luo, D. (2024). Stimuli-responsive linkers and their application in molecular imaging. Exploration, 4(4), 20230027. https://doi.org/10.1002/EXP.20230027
Yoneda,Y. (1997). How Proteins Are Transported from Cytoplasm to the Nucleus. The Journal of Biochemistry, 121(5), 811 – 817. https://doi.org/10.1093/oxfordjournals.jbchem.a021657
Zhong, Y.-J., Shao, L.-H., & Li, Y. (2013). Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review). Int J Oncol, 42(2), 373-383. https://doi.org/10.3892/ijo.2012.1754