Difference between revisions of "Part:BBa K5136200"
Line 26: | Line 26: | ||
===Colony PCR=== | ===Colony PCR=== | ||
− | We construct <partinfo>BBa_K5136200</partinfo> with J23100 promotor, RiboJ, B0034 RBS, LMT-linker-sfgfp, and B0010 terminator, the transformed cells are selected by colony PCR. The experiment result is | + | We construct <partinfo>BBa_K5136200</partinfo> with J23100 promotor, RiboJ, B0034 RBS, LMT-linker-sfgfp, and B0010 terminator, the transformed cells are selected by colony PCR. The experiment result is shown in Figure 1. |
<center><html><img src="https://static.igem.wiki/teams/5136/part/crq-kyh/200.png" width="200px"></html></center> | <center><html><img src="https://static.igem.wiki/teams/5136/part/crq-kyh/200.png" width="200px"></html></center> | ||
Line 35: | Line 35: | ||
To characterize the strength of the signal peptide, we constructed circuits driven by promoters of different strengths (J23100, J23103, J23104, J23106, J23110, J23114), each containing RiboJ-B0034-LMT-linker-sfgfp-B0010. By measuring the fluorescence intensity in the supernatant of each circuit, we can quantitatively analyze the guiding efficiency of the LMT signal peptide under different promoter strengths and thus evaluate its secretion capability. | To characterize the strength of the signal peptide, we constructed circuits driven by promoters of different strengths (J23100, J23103, J23104, J23106, J23110, J23114), each containing RiboJ-B0034-LMT-linker-sfgfp-B0010. By measuring the fluorescence intensity in the supernatant of each circuit, we can quantitatively analyze the guiding efficiency of the LMT signal peptide under different promoter strengths and thus evaluate its secretion capability. | ||
− | <center><html><img src="https://static.igem.wiki/teams/5136/part/crq-kyh/fluorescence.jpg" width="400px"></html></center> | + | <center><html><img src="https://static.igem.wiki/teams/5136/part/crq-kyh/fluorescence-fix.jpg" width="400px"></html></center> |
<center><b>Figure 2 Fluorescence intensity in the supernatant of circuits driven by <partinfo>BBa_K5136200</partinfo>, <partinfo>BBa_K5136201</partinfo>, <partinfo>BBa_K5136202</partinfo>, <partinfo>BBa_K5136203</partinfo>, <partinfo>BBa_K5136204</partinfo>, <partinfo>BBa_K5136205</partinfo>.</b></center> | <center><b>Figure 2 Fluorescence intensity in the supernatant of circuits driven by <partinfo>BBa_K5136200</partinfo>, <partinfo>BBa_K5136201</partinfo>, <partinfo>BBa_K5136202</partinfo>, <partinfo>BBa_K5136203</partinfo>, <partinfo>BBa_K5136204</partinfo>, <partinfo>BBa_K5136205</partinfo>.</b></center> |
Revision as of 14:03, 1 October 2024
J23100-RiboJ-B0034-LMT-linker-sfgfp-B0010
Biology
RiboJ
RiboJ is a self-cleaving ribozyme that removes the 5' untranslated region, creating a precise mRNA start. This ensures consistent and reliable translation of the downstream LMT-sfGFP fusion, acting as a genetic insulator and enhancing expression predictability (1).
LMT
The LMT signal peptide, derived from Vibrio natriegens, directs the attached sfGFP protein to the periplasm. Once in the periplasm, the LMT sequence is cleaved, leaving the mature sfGFP for study in this compartment.
Superfolder GFP (sfGFP)
This stable, fast-folding version of GFP emits bright green fluorescence, even in harsh environments like the periplasm. It allows real-time tracking of protein expression and localization.
Usage and Design
In order to test the effect of different promoters on the function of LMT signal peptides, this composite part J23100-RiboJ-B0034-LMT-linker-sfgfp-B0010 was constructed, coding for the LMT-sfGFP fusion protein. The LMT signal peptide is responsible for guiding the protein to the periplasm of E. coli, and the success of this targeting can be observed through the fluorescence emitted by superfolder GFP. The inclusion of a flexible linker ensures that both the LMT and sfGFP can fold correctly, maintaining their respective functions. Moreover, the RiboJ ribozyme provides consistent and reliable expression by eliminating variability from upstream sequences, ensuring stable production of the LMT-sfGFP fusion protein for further analysis of protein behavior and periplasmic localization.
Characterization of Signal Peptides
Colony PCR
We construct BBa_K5136200 with J23100 promotor, RiboJ, B0034 RBS, LMT-linker-sfgfp, and B0010 terminator, the transformed cells are selected by colony PCR. The experiment result is shown in Figure 1.
Characterization of Signal Peptides
To characterize the strength of the signal peptide, we constructed circuits driven by promoters of different strengths (J23100, J23103, J23104, J23106, J23110, J23114), each containing RiboJ-B0034-LMT-linker-sfgfp-B0010. By measuring the fluorescence intensity in the supernatant of each circuit, we can quantitatively analyze the guiding efficiency of the LMT signal peptide under different promoter strengths and thus evaluate its secretion capability.
It shows that the fluorescence intensity increases with promoter strength, indicating that the LMT signal peptide more effectively directs the sfGFP to the periplasm and supernatant under stronger promoter conditions in Figure 2. However, differences in secretion efficiency among promoters suggest that the signal peptide's effectiveness is influenced by promoter strength, with possible saturation or efficiency limits.
Reference
1. Lou C, Stanton B, Chen Y J, et al. Ribozyme-based insulator parts buffer synthetic circuits from genetic context[J]. Nature biotechnology, 2012, 30(11): 1137-1142.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 7
Illegal NheI site found at 30 - 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 277