Difference between revisions of "Part:BBa K5301003"
Line 3: | Line 3: | ||
<partinfo>BBa_K5301003 short</partinfo> | <partinfo>BBa_K5301003 short</partinfo> | ||
− | SpyTag comes from the spontaneous isopeptide bond domain in streptococcus pyogenes fibronectin-binding protein FbaB. It can cooperate with SpyCatcher to achieve covalent binding of proteins through Tag-Catcher interaction. The robust reaction conditions and irreversible linkage of SpyTag-Catcher provide a targetable lock in cells and a stable module for new protein architectures. | + | SpyTag comes from the spontaneous isopeptide bond domain in streptococcus pyogenes fibronectin-binding protein FbaB. It can cooperate with SpyCatcher to achieve covalent binding of proteins through Tag-Catcher interaction. The robust reaction conditions and irreversible linkage of SpyTag-Catcher provide a targetable lock in cells and a stable module for new protein architectures. |
<center><html><img src='https://static.igem.wiki/teams/5301/parts/spytag-nw50-spycatcher.png' width='400px'></html></center> | <center><html><img src='https://static.igem.wiki/teams/5301/parts/spytag-nw50-spycatcher.png' width='400px'></html></center> | ||
− | <center><html>Figure 1.Structure of Spycatcher-NW50-SpyTag protein extract.From this structure diagram, it is predicted that spytag and spycatcher can be successfully combined at both ends of the | + | <center><html>Figure 1.Structure of Spycatcher-NW50-SpyTag protein extract.From this structure diagram, it is predicted that spytag and spycatcher can be successfully combined at both ends of the spNW50. |
</html></center> | </html></center> | ||
Line 29: | Line 29: | ||
In the design, we intend to use the robust reaction conditions and irreversible connections of SpyCatcher and SpyTag to link the two ends of the MSP protein, thereby enabling the formation of nanodiscs. | In the design, we intend to use the robust reaction conditions and irreversible connections of SpyCatcher and SpyTag to link the two ends of the MSP protein, thereby enabling the formation of nanodiscs. | ||
− | In the experiment, we successfully characterized the | + | In the experiment, we successfully characterized the spNW50 [BBa_K5301015] protein with spytag and spycatcher, but their presence promoted the dimerization of the protein (Figure 2a). Through the engineering of iGEM24_BNU-China, we alleviated the dimerization problem and produced a monomeric protein with two tags (Figure 2bc). |
<div class="center"> | <div class="center"> | ||
Line 39: | Line 39: | ||
<a href="https://static.igem.wiki/teams/5301/parts/sds-results-of-nw50-dimerization-or-monomerization.png" class="internal" title="Enlarge"></a> | <a href="https://static.igem.wiki/teams/5301/parts/sds-results-of-nw50-dimerization-or-monomerization.png" class="internal" title="Enlarge"></a> | ||
</div> | </div> | ||
− | <b>Figure 2. SDS analysis of | + | <b>Figure 2. SDS analysis of spNW50 with Spytag results of dimerization(a) and monomerization(bc).</b> |
</div> | </div> | ||
Line 57: | Line 57: | ||
<a href="https://static.igem.wiki/teams/5301/parts/nw50-electron-microscope-photograph-dls-result.png" class="internal" title="Enlarge"></a> | <a href="https://static.igem.wiki/teams/5301/parts/nw50-electron-microscope-photograph-dls-result.png" class="internal" title="Enlarge"></a> | ||
</div> | </div> | ||
− | <b>Figure 3. Electron microscopic images(a) and DLS particle size results(b) of nanodiscs by | + | <b>Figure 3. Electron microscopic images(a) and DLS particle size results(b) of nanodiscs by spNW50 and Spytag. </b> |
</div> | </div> |
Revision as of 09:33, 1 October 2024
SpyTag can achieve covalent binding of proteins through Tag-Catcher interaction.
SpyTag comes from the spontaneous isopeptide bond domain in streptococcus pyogenes fibronectin-binding protein FbaB. It can cooperate with SpyCatcher to achieve covalent binding of proteins through Tag-Catcher interaction. The robust reaction conditions and irreversible linkage of SpyTag-Catcher provide a targetable lock in cells and a stable module for new protein architectures.
Sequence and Features
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]