Difference between revisions of "Part:BBa K5237009"

Line 24: Line 24:
 
     border: 0.5px solid black;
 
     border: 0.5px solid black;
 
     border-collapse: collapse;
 
     border-collapse: collapse;
 +
    padding: 5px;
 
   }
 
   }
  
   th,
+
   .thumbcaption {
   td {
+
    text-align: justify !important;
     padding: 1.5px;
+
  }
 +
 
 +
 
 +
  a[href ^="https://"],
 +
   .link-https {
 +
    background: none !important;
 +
     padding-right: 0px !important;
 
   }
 
   }
 
</style>
 
</style>
Line 37: Line 44:
 
     <h1>Mini staple:</h1>
 
     <h1>Mini staple:</h1>
 
     <p>
 
     <p>
       The Mini staple is a fusion of GCN4 and rGCN4, engineered to bind two DNA strands simultaneously and induce proximity.
+
       The Mini staple is a fusion of GCN4 and rGCN4, engineered to bind two DNA strands simultaneously and induce
 +
      proximity.
 
       With the Mini staples, we aimed to engineer a smaller alternative to the simple staples.
 
       With the Mini staples, we aimed to engineer a smaller alternative to the simple staples.
 
     </p>
 
     </p>
     <p>&nbsp;</p>
+
     <p> </p>
 
   </section>
 
   </section>
   <div id="toc" class="toc">
+
   <div class="toc" id="toc">
 
     <div id="toctitle">
 
     <div id="toctitle">
 
       <h1>Contents</h1>
 
       <h1>Contents</h1>
Line 56: Line 64:
 
             and part evolution</span></a>
 
             and part evolution</span></a>
 
       </li>
 
       </li>
       <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
+
       <li class="toclevel-1 tocsection-4"><a href="#4"><span class="tocnumber">4</span> <span
 
             class="toctext">Results</span></a>
 
             class="toctext">Results</span></a>
 
         <ul>
 
         <ul>
           <li class="toclevel-2 tocsection-6">
+
           <li class="toclevel-2 tocsection-4.1"><a href="#4.1"><span class="tocnumber">4.1</span> <span
            <a href="#4.1"><span class="tocnumber">4.1</span> <span class="toctext">Protein Expression and
+
                class="toctext">Protein Expression and Purification</span></a>
                Purification</span></a>
+
 
           </li>
 
           </li>
           <li class="toclevel-2 tocsection-7">
+
           <li class="toclevel-2 tocsection-4.2"><a href="#4.2"><span class="tocnumber">4.2</span> <span
            <a href="#4.2"><span class="tocnumber">4.2</span> <span class="toctext">Electrophoretic Mobility Shift
+
                class="toctext">Electrophoretic Mobility Shift Assay</span></a>
                Assay</span></a>
+
 
             <ul>
 
             <ul>
               <li class="toclevel-3 tocsection-8">
+
               <li class="toclevel-3 tocsection-4.2.1"><a href="#4.2.1"><span class="tocnumber">4.2.1</span> <span
                <a href="#4.2"><span class="tocnumber">4.2.1</span> <span class="toctext">Qualitative DNA binding
+
                    class="toctext">Qualitative DNA binding analysis</span></a>
                    analysis</span></a>
+
 
               </li>
 
               </li>
               <li class="toclevel-3 tocsection-9">
+
               <li class="toclevel-3 tocsection-4.2.2"><a href="#4.2.2"><span class="tocnumber">4.2.2</span> <span
                <a href="#4.2"><span class="tocnumber">4.2.2</span> <span class="toctext">Quantitative DNA binding
+
                    class="toctext">Quantitative DNA binding analysis</span></a>
                    analysis</span></a>
+
 
               </li>
 
               </li>
 
             </ul>
 
             </ul>
 
           </li>
 
           </li>
 +
          <li class="toclevel-2 tocsection-4.3"><a href="#4.3"><span class="tocnumber">4.3</span> <span
 +
                class="toctext">In Silico Characterization using DaVinci</span></a>
 
         </ul>
 
         </ul>
 
       </li>
 
       </li>
Line 85: Line 91:
 
   </div>
 
   </div>
 
   <section>
 
   <section>
 +
    <p><br /><br /></p>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
    <p><br></p>
+
     <div class="thumb" style="margin-top:10px;"></div>
     <div class="thumb"></div>
+
    <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage"
      <div class="thumbinner" style="width:550px"><img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" style="width:99%;" class="thumbimage">
+
        src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg"
        <div class="thumbcaption">
+
        style="width:99%;" />
          <i><b>Figure 1: Example how the part collection can be used to engineer new staples</b></i>
+
      <div class="thumbcaption">
        </div>
+
        <i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
   
 
  
 
     <p>
 
     <p>
       <br>
+
       <br />
       The 3D organization of the genome plays a crucial role in regulating gene expression in eukaryotic cells,
+
       Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene
       impacting cellular behavior, evolution, and disease. Beyond the linear DNA sequence, the spatial arrangement of
+
       regulation,
       chromatin, influenced by DNA-DNA interactions, shapes pathways of gene regulation. However, the tools to precisely
+
       cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture
      manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the
+
      remain limited, rendering it challenging to explore the full potential of the
 
       3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
 
       3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
 
       toolbox based on various DNA-binding proteins to address this issue.
 
       toolbox based on various DNA-binding proteins to address this issue.
 
 
     </p>
 
     </p>
 
     <p>
 
     <p>
Line 113: Line 118:
 
       Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
 
       Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
 
       testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
 
       testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
       parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts
+
       parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts.
 
     </p>
 
     </p>
 
+
     <p>At its heart, the PICasSO part collection consists of three categories. <br /><b>(i)</b> Our <b>DNA-binding
     <p>At its heart, the PICasSO part collection consists of three categories. <br><b>(i)</b> Our <b>DNA-binding proteins</b>
+
        proteins</b>
 
       include our
 
       include our
 
       finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
 
       finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
       new Cas staples in the future. We also include our simple staples that serve as controls for successful stapling
+
       new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling
       and can be further engineered to create alternative, simpler and more compact staples. <br>
+
       and can be further engineered to create alternative, simpler and more compact staples. <br />
       <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and Basic staples. These
+
       <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and
 +
      Basic staples. These
 
       consist of
 
       consist of
 
       protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>.
 
       protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>.
       Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our
+
       Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs
       interkingdom conjugation system. <br>
+
      with our
       <b>(iii)</b> As the final component of our collection, we provide parts that support the use of our <b>custom readout
+
       interkingdom conjugation system. <br />
 +
       <b>(iii)</b> As the final category of our collection, we provide parts that support the use of our <b>custom
 +
        readout
 
         systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
 
         systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
 
       confirm
 
       confirm
 
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
 
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
       readout via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking.
+
       readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking
 +
      in mammalian cells.
 
     </p>
 
     </p>
 
     <p>
 
     <p>
       The following table gives a complete overview of all parts in our PICasSO toolbox. The highlighted parts showed
+
       The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark
      exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the
+
        style="background-color: #FFD700; color: black;">The highlighted parts showed
 +
        exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other parts in
 +
      the
 
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
 
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
       own custom Cas staples, enabling further optimization and innovation.<br>
+
       own custom Cas staples, enabling further optimization and innovation.<br />
 
     </p>
 
     </p>
 
     <p>
 
     <p>
       <font size="4"><b>Our part collection includes:</b></font><br>
+
       <font size="4"><b>Our part collection includes:</b></font><br />
 
     </p>
 
     </p>
 
+
     <table style="width: 90%; padding-right:10px;">
     <table style="width: 90%;">
+
       <td align="left" colspan="3"><b>DNA-binding proteins: </b>
       <td colspan="3" align="left"><b>DNA-binding proteins: </b>
+
 
         The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
 
         The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
 
         easy assembly.</td>
 
         easy assembly.</td>
Line 149: Line 159:
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
           <td>fgRNA Entryvector MbCas12a-SpCas9</td>
+
           <td>fgRNA Entry vector MbCas12a-SpCas9</td>
 
           <td>Entryvector for simple fgRNA cloning via SapI</td>
 
           <td>Entryvector for simple fgRNA cloning via SapI</td>
 
         </tr>
 
         </tr>
         <tr>
+
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
 
           <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
 
           <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with fgRNA and dCas9 </td>
+
           <td>Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple</td>
 
         </tr>
 
         </tr>
         <tr>
+
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 
           <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
 
           <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with our fgRNA or dCas12a
+
           <td>Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple
 
           </td>
 
           </td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
           <td>Cas-Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
+
           <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
           <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands in close proximity
+
           <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close
 +
            proximity
 
           </td>
 
           </td>
 
         </tr>
 
         </tr>
Line 172: Line 183:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
 
           <td>Staple subunit: Oct1-DBD</td>
 
           <td>Staple subunit: Oct1-DBD</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br>
+
           <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br />
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
         </tr>
 
         </tr>
Line 178: Line 189:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
 
           <td>Staple subunit: TetR</td>
 
           <td>Staple subunit: TetR</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br>
+
           <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br />
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
           <td>Simple taple: TetR-Oct1</td>
+
           <td>Simple staple: TetR-Oct1</td>
 
           <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
           <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
         </tr>
 
         </tr>
Line 203: Line 214:
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
       <td colspan="3" align="left"><b>Functional elements: </b>
+
       <td align="left" colspan="3"><b>Functional elements: </b>
         Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization
+
         Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization
         for custom applications.</td>
+
         for custom applications</td>
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
           <td>Cathepsin B-Cleavable Linker (GFLG)</td>
+
           <td>Cathepsin B-cleavable Linker: GFLG</td>
           <td>Cathepsin B cleavable peptide linker, that can be used to combine two staple subunits ,to make responsive
+
           <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive
 
             staples</td>
 
             staples</td>
 
         </tr>
 
         </tr>
Line 216: Line 227:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
           <td>Cathepsin B Expression Cassette</td>
 
           <td>Cathepsin B Expression Cassette</td>
           <td>Cathepsin B which can be selectively express to cut the cleavable linker</td>
+
           <td>Expression Cassette for the overexpression of cathepsin B</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
 
           <td>Caged NpuN Intein</td>
 
           <td>Caged NpuN Intein</td>
           <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
+
           <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation.
 +
            Can be used to create functionalized staples
 
             units</td>
 
             units</td>
 
         </tr>
 
         </tr>
Line 227: Line 239:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
 
           <td>Caged NpuC Intein</td>
 
           <td>Caged NpuC Intein</td>
           <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
+
           <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation.
 +
            Can be used to create functionalized staples
 
             units</td>
 
             units</td>
 
         </tr>
 
         </tr>
Line 233: Line 246:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
 
           <td>fgRNA processing casette</td>
 
           <td>fgRNA processing casette</td>
           <td>Processing casette to produce multiple fgRNAs from one transcript, can be used for multiplexing</td>
+
           <td>Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D
 +
            genome reprograming</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 240: Line 254:
 
           <td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large
 
           <td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large
 
             constructs</td>
 
             constructs</td>
 +
        </tr>
 +
        <tr>
 +
          <td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td>
 +
          <td>incP origin of transfer</td>
 +
          <td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of
 +
            delivery</td>
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
       <td colspan="3" align="left"><b>Readout Systems: </b>
+
       <td align="left" colspan="3"><b>Readout Systems: </b>
 
         FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
 
         FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
         enabling swift testing and easy development for new systems.</td>
+
         enabling swift testing and easy development for new systems</td>
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
 
           <td>FRET-Donor: mNeonGreen-Oct1</td>
 
           <td>FRET-Donor: mNeonGreen-Oct1</td>
           <td>Donor part for the FRET assay binding the Oct1 binding cassette. Can be used to visualize DNA-DNA
+
           <td>FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize
 +
            DNA-DNA
 
             proximity</td>
 
             proximity</td>
 
         </tr>
 
         </tr>
Line 261: Line 282:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
 
           <td>Oct1 Binding Casette</td>
 
           <td>Oct1 Binding Casette</td>
           <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
+
           <td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET
 
             proximity assay</td>
 
             proximity assay</td>
 
         </tr>
 
         </tr>
Line 272: Line 293:
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 
         <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
 
         <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
         <td>Readout system that responds to protease activity. It was used to test Cathepsin-B cleavable linker.</td>
+
         <td>Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker</td>
        </tr>
+
 
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
           <td>NLS-Gal4-VP64</td>
 
           <td>NLS-Gal4-VP64</td>
           <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking. </td>
+
           <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking</td>
 
         </tr>
 
         </tr>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 
         <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
 
         <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
         <td>Readout system for enhancer binding. It was used to test Cathepsin-B cleavable linker.</td>
+
         <td>Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker</td>
        </tr>
+
 
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 
           <td>Oct1 - 5x UAS binding casette</td>
 
           <td>Oct1 - 5x UAS binding casette</td>
           <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay.</td>
+
           <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 292: Line 313:
 
           <td>TRE-minimal promoter- firefly luciferase</td>
 
           <td>TRE-minimal promoter- firefly luciferase</td>
 
           <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
 
           <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
             simulated enhancer hijacking.</td>
+
             simulated enhancer hijacking</td>
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
 
     </table>
 
     </table>
    </p>
 
 
   </section>
 
   </section>
 
   <section id="1">
 
   <section id="1">
Line 304: Line 324:
  
 
</html>
 
</html>
 
 
<!--################################-->
 
<!--################################-->
<span class='h3bb'>Sequence and Features</span>
+
<span class="h3bb">Sequence and Features</span>
 
<partinfo>BBa_K5237009 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K5237009 SequenceAndFeatures</partinfo>
 
<!--################################-->
 
<!--################################-->
 
 
<html>
 
<html>
 
 
 
<section id="2">
 
<section id="2">
 
   <h1>2. Usage and Biology</h1>
 
   <h1>2. Usage and Biology</h1>
 
   <p>Small basic-region leucine zipper (bZip) proteins are characterized by their DNA-binding. The bZip motif
 
   <p>Small basic-region leucine zipper (bZip) proteins are characterized by their DNA-binding. The bZip motif
 
     consists of a coiled-coil leucine zipper dimerization domain, and a highly charged basic region that directly
 
     consists of a coiled-coil leucine zipper dimerization domain, and a highly charged basic region that directly
     contacts and binds to DNA (Hollenbeck & Oakley, 2000). One well characterized example is the General Control Protein
+
     contacts and binds to DNA (Hollenbeck &amp; Oakley, 2000). One well characterized example is the General Control
     4 (GCN4), a well-characterized transcriptional activator from yeast (Arndt & Fink, 1986). At its N-terminus, GCN4
+
    Protein
 +
     4 (GCN4), a well-characterized transcriptional activator from yeast (Arndt &amp; Fink, 1986). At its N-terminus,
 +
    GCN4
 
     contains basic residues, the so-called bZip domain, through which it binds specifically to the CRE (cyclic AMP
 
     contains basic residues, the so-called bZip domain, through which it binds specifically to the CRE (cyclic AMP
 
     response element) DNA sequence (5' ATGACGTCAT 3') (Hollenbeck <i>et al.</i>, 2002). A variant of GCN4 with the DNA
 
     response element) DNA sequence (5' ATGACGTCAT 3') (Hollenbeck <i>et al.</i>, 2002). A variant of GCN4 with the DNA
Line 351: Line 369:
 
   </p>
 
   </p>
 
   <section id="4.1">
 
   <section id="4.1">
     <h1>4.1 Protein Expression and Purification</h1>
+
     <h2>4.1 Protein Expression and Purification</h2>
 
     <p>
 
     <p>
 
       The bZip proteins GCN4, rGCN4 and their fusion bGCN4 were fused N-terminally to a FLAG-tag (DYKDDDDK). All
 
       The bZip proteins GCN4, rGCN4 and their fusion bGCN4 were fused N-terminally to a FLAG-tag (DYKDDDDK). All
 
       proteins could be readily
 
       proteins could be readily
       expressed under the T7 promoter in <i class=”italic”>E. coli</i> BL21 DE3 and purified with Anti-FLAG affinity
+
       expressed under the T7 promoter in <i class="”italic”">E. coli</i> BL21 DE3 and purified with Anti-FLAG affinity
 
       columns. The purity of the proteins was confirmed by SDS-PAGE (Figure 2).
 
       columns. The purity of the proteins was confirmed by SDS-PAGE (Figure 2).
 
     </p>
 
     </p>
 
     <div class="thumb"></div>
 
     <div class="thumb"></div>
     <div class="thumbinner" style="width:550px"><img alt=""
+
     <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage"
 
         src="https://static.igem.wiki/teams/5237/wetlab-results/mist-sds-page-expression-validation.svg"
 
         src="https://static.igem.wiki/teams/5237/wetlab-results/mist-sds-page-expression-validation.svg"
         style="width:99%;" class="thumbimage">
+
         style="width:99%;" />
 
       <div class="thumbcaption">
 
       <div class="thumbcaption">
 
         <i><b>Figure 2: SDS-PAGE analysis of protein purification.</b>Analysis of fractions eluate of purified protein
 
         <i><b>Figure 2: SDS-PAGE analysis of protein purification.</b>Analysis of fractions eluate of purified protein
Line 368: Line 386:
 
           are highlighted by red</i>
 
           are highlighted by red</i>
 
       </div>
 
       </div>
    </div>
 
 
     </div>
 
     </div>
 
   </section>
 
   </section>
   <section>
+
   <section id="4.2">
     <section id="4.2">
+
    <h2>4.2 Electrophoretic Mobility Shift Assay</h2>
       <h1>4.2 Electrophoretic Mobility Shift Assay</h1>
+
    <div class="thumb tright">
 +
      <div class="thumbinner" style="width:310px;">
 +
        <img alt="" class="thumbimage"
 +
          src="https://static.igem.wiki/teams/5237/figures-corrected/leucin-zipper-emsa.svg" style="width:99%;" />
 +
        <div class="thumbcaption">
 +
          <i>
 +
            <b>Figure 3: Overview Image of Electrophoretic Mobility Shift Assay (EMSA)</b>
 +
          </i>
 +
        </div>
 +
      </div>
 +
    </div>
 +
    <p align="justify"></p>
 +
    The Electrophoretic mobility shift assay (EMSA) is a widely adopted method used to study DNA-protein
 +
    interactions. EMSA functions on the basis that nucleic acids bound to proteins have reduced electrophoretic
 +
    mobility, compared to their counterpart. (Hellman &amp; Fried, 2007). Mobility-shift
 +
    assays can both be used to qualitatively assess DNA binding capabilities or quantitatively to determine binding
 +
    stoichiometry and kinetics such as the apparent dissociation constant (K<sub>d</sub>) (Fried, 1989).
 +
    </p>
 +
     <section style="clear:both;" id="4.2.1">
 +
       <h2>4.2.1 Qualitative DNA binding analysis</h2>
 
       <p>
 
       <p>
         The Electrophoretic mobility shift assay (EMSA) is a widely adopted method used to study DNA-protein
+
         To asses possible DNA binding, a qualitative EMSA was performed with the purified proteins. The same binding
        interactions. EMSa functions on the basis that nucleic acids bound to proteins have reduced electrophoretic
+
         buffer conditions were used, as previously desribed for GCN4 and rGCN4 (Hollenbeck <i>et al.</i> 2001).
         mobility, compared to their counterpart. (Hellman & Fried, 2007). Mobility-shift
+
         DNA binding could only be shown for GCN4 and rGCN4, no visible band was observed for the bGCN4 fusion protein
         assays can both be used to qualitatively assess DNA binding capabilities or quantitatively to determine binding
+
         (Figure 4).
         stoichiometry and kinetics such as the apparent dissociation constant (K<sub>d</sub>) (Fried, 1989).
+
 
       </p>
 
       </p>
 
       <div class="thumb">
 
       <div class="thumb">
         <div class="thumbinner" style="width:60%;">
+
         <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage"
          <img alt="" src="https://static.igem.wiki/teams/5237/figures-corrected/leucin-zipper-emsa.svg"
+
            src="https://static.igem.wiki/teams/5237/wetlab-results/mist-emsa-quali.svg" style="width:99%;" />
          style="width:99%;" class="thumbimage">
+
 
           <div class="thumbcaption">
 
           <div class="thumbcaption">
             <i>
+
             <i><b>Figure 4: Qualitative EMSA DNA binding</b>
              <b>Figure 3: Overview Image of Electrophoretic Mobility Shift Assay (EMSA)</b>
+
              0.5 µM of annealed oligos (20 bp) containing either one CRE or INVii binding site were incubated with
            </i>
+
              200
 +
              µM
 +
              of protein
 +
              and equilibrated in binding buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na <sub>2</sub>HPO<sub>4</sub>, 1.8
 +
              mM
 +
              KH<sub>2</sub>HPO<sub>4</sub>, 0.1 % (v/v) IGEPAL® CA-360, 1 mM EDTA). Gel electorphoresis was
 +
              performed with a pre-equilibrated TGX-Gel in TBE running buffer.
 +
              Gel-bands were visualized by staining with SYBR Safe and imaged with an UV transilluminator.</i>
 
           </div>
 
           </div>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
      <section>
+
    </section>
        <h1>4.2.1 Qualitative DNA binding analysis</h1>
+
    <section id="4.2.2">
        <p>
+
       <h2>4.2.2 Quantitative DNA binding analysis</h2>
          To asses possible DNA binding, a qualitative EMSA was performed with the purified proteins. The same binding
+
      <p>
          buffer conditions were used, as previously desribed for GCN4 and rGCN4 (Hollenbeck <i>et al.</i> 2001).
+
        To further analyze DNA binding, quantitative shift assays were performed for GCN4 and rGCN4. Here
          DNA binding could only be shown for GCN4 and rGCN4, no visible band was observed for the bGCN4 fusion protein
+
        0.5 µM DNA were incubated with varying concentrations of protein until equilibration. After
          (Figure 4).
+
        electrophoresis, bands were stained with SYBR-Safe and quantified based on pixel intensity. The
        </p>
+
        obtained values were fitted to equation 1, describing formation of a 2:1 protein-DNA complex:
        <div class="thumb">
+
        <br /><br />
          <div class="thumbinner" style="width:550px"><img alt=""
+
        Θ<sub>app</sub> = Θ<sub>min</sub> + (Θ<sub>max</sub> - Θ<sub>min</sub>) ×
              src="https://static.igem.wiki/teams/5237/wetlab-results/mist-emsa-quali.svg" style="width:99%;"
+
        (K<sub>a</sub><sup>2</sup> [L]<sub>tot</sub><sup>2</sup>) / (1 + K<sub>a</sub><sup>2</sup>
              class="thumbimage">
+
        [L]<sub>tot</sub><sup>2</sup>)
            <div class="thumbcaption">
+
        <span style="float: right;">Equation 1</span>
              <i><b>Figure 4: Qualitative EMSA DNA binding</b>
+
        <br /><br />
                0.5 µM of annealed oligos (20 bp) containing either one CRE or INVii binding site were incubated with 200
+
        Here [L]<sub>tot</sub> describes the total protein monomer concentration, K<sub>a</sub>
                µM
+
        corresponds
                of protein
+
        to the apparent monomeric equilibration constant. The Θ<sub>min/max</sub> values are the
                and equilibrated in binding buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na <sub>2</sub>HPO<sub>4</sub>, 1.8 mM
+
        experimentally
                KH<sub>2</sub>HPO<sub>4</sub>, 0.1 % (v/v) IGEPAL&#174; CA-360, 1 mM EDTA). Gel electorphoresis was
+
        determined site saturation values (For this experiment 0 and 1 were chosen for min and max
                performed with a pre-equilibrated TGX-Gel in TBE running buffer.
+
        respectively). GCN4 binds to its optimal DNA binding motif with an apparent dissociation
                Gel-bands were visualized by staining with SYBR Safe and imaged with an UV transilluminator.</i>
+
        constant K<sub>k</sub> of (0.2930.033)×10<sup>-6</sup> M, which is almost identical to the
            </div>
+
        rGCN4 binding
          </div>
+
        affinity to INVii a <sub>d</sub> of (0.2980.030)×10<sup>-6</sup> M.
        </div>
+
      </p>
       </section>
+
      <div class="thumb">
      <section>
+
        <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage"
        <h1>4.2.2 Quantitative DNA binding analysis</h1>
+
            src="https://static.igem.wiki/teams/5237/wetlab-results/mist-leucine-zipper-kd-plot.svg"
        <p>
+
            style="width:99%;" />
          To further analyze DNA binding, quantitative shift assays were performed for GCN4 and rGCN4. Here
+
          <div class="thumbcaption">
          0.5 µM DNA were incubated with varying concentrations of protein until equilibration. After
+
            <i><b>Figure 5: K<sub>d</sub> Calculation of GCN4 and rGCN4</b>
          electrophoresis, bands were stained with SYBR-Safe and quantified based on pixel intensity. The
+
              Quantitative assessment of binding affinity for GCN4 and rGCN4. Proteins of varying
          obtained values were fitted to equation 1, describing formation of a 2:1 protein-DNA complex:
+
              concentrations were incubated with 0.5 µM DNA (20 bp, containing one binding site for CRE or INVii) in
          <br><br>
+
              Binding buffer 1, and the bound fraction
          Θ<sub>app</sub> = Θ<sub>min</sub> + (Θ<sub>max</sub> - Θ<sub>min</sub>) &#215;
+
              analyzed by dividing pixel intensity of bound fraction with pixel intensity of bound and unbound
          (K<sub>a</sub><sup>2</sup> [L]<sub>tot</sub><sup>2</sup>) / (1 + K<sub>a</sub><sup>2</sup>
+
              fraction
          [L]<sub>tot</sub><sup>2</sup>)
+
              using ImageJ. At
          <span style="float: right;">Equation 1</span>
+
              least three separate measurements were conducted for each data point. Values are presented as mean +/-
          <br><br>
+
              SD</i>
          Here [L]<sub>tot</sub> describes the total protein monomer concentration, K<sub>a</sub>
+
          corresponds
+
          to the apparent monomeric equilibration constant. The Θ<sub>min/max</sub> values are the
+
          experimentally
+
          determined site saturation values (For this experiment 0 and 1 were chosen for min and max
+
          respectively). GCN4 binds to its optimal DNA binding motif with an apparent dissociation
+
          constant K<sub>k</sub> of (0.2930.033)&#215;10<sup>-6</sup> M, which is almost identical to the
+
          rGCN4 binding
+
          affinity to INVii a <sub>d</sub> of (0.2980.030)&#215;10<sup>-6</sup> M.
+
        </p>
+
 
+
        <div class="thumb">
+
          <div class="thumbinner" style="width:550px"><img alt=""
+
              src="https://static.igem.wiki/teams/5237/wetlab-results/mist-leucine-zipper-kd-plot.svg" style="width:99%;"
+
              class="thumbimage">
+
            <div class="thumbcaption">
+
              <i><b>Figure 5: K<sub>d</sub> Calculation of GCN4 and rGCN4</b>
+
                Quantitative assessment of binding affinity for GCN4 and rGCN4. Proteins of varying
+
                concentrations were incubated with 0.5 µM DNA (20 bp, containing one binding site for CRE or INVii) in
+
                Binding buffer 1, and the bound fraction
+
                analyzed by dividing pixel intensity of bound fraction with pixel intensity of bound and unbound fraction
+
                using ImageJ. At
+
                least three separate measurements were conducted for each data point. Values are presented as mean +/-
+
                SD</i>
+
            </div>
+
 
           </div>
 
           </div>
 
         </div>
 
         </div>
 +
      </div>
 
       <p>
 
       <p>
         To better understand the proteins, quantitative analysis was done to determine the apparent dissociation constant
+
         To better understand the proteins, quantitative analysis was done to determine the apparent dissociation
         for GCN4 and rGCN4. <br>
+
        constant
         For the purified proteins GCN4, rGCN4 and the fusion bGCN4 a qualitative gel was run with high protein concentration (Figure 3).
+
         for GCN4 and rGCN4. <br />
 +
         For the purified proteins GCN4, rGCN4 and the fusion bGCN4 a qualitative gel was run with high protein
 +
        concentration (Figure 3).
 
         Bands for GCN4 and rGCN4 were visible but no band for bGCN4 could be detected, indicating a
 
         Bands for GCN4 and rGCN4 were visible but no band for bGCN4 could be detected, indicating a
 
         lack of DNA binding. This suggests that the dimerization, necessary for DNA binding, is disrupted by the
 
         lack of DNA binding. This suggests that the dimerization, necessary for DNA binding, is disrupted by the
 
         GSG-linker (Ellenberger <i class="italic">et al.</i>, 1992; Liu <i class="italic">et al.</i>, 2006; Lupas
 
         GSG-linker (Ellenberger <i class="italic">et al.</i>, 1992; Liu <i class="italic">et al.</i>, 2006; Lupas
         <i class="italic">et al.</i>, 2017; Woolfson, 2023). To better understand possible problems in dimerization circular dichroism can be used to analyze secondary structure
+
         <i class="italic">et al.</i>, 2017; Woolfson, 2023). To better understand possible problems in dimerization
 +
        circular dichroism can be used to analyze secondary structure
 
         and proper coiled coil formation (Greenfield, 2006). Further engineering can be done by testing out
 
         and proper coiled coil formation (Greenfield, 2006). Further engineering can be done by testing out
 
         various linkers with specific properties to ensure correct folding and dimerization (Chen <i class="italic">et
 
         various linkers with specific properties to ensure correct folding and dimerization (Chen <i class="italic">et
           al.</i>, 2013). The apparent binding kinetics calculated for GCN4 ((0.2930.033) &#215; 10<sup>-6</sup> M) and rGCN4
+
           al.</i>, 2013). The apparent binding kinetics calculated for GCN4 ((0.2930.033) × 10<sup>-6</sup> M) and
         ((0.2980.030) &#215; 10<sup>-6</sup> M) are
+
        rGCN4
         approximately a factor 10 higher then those described in literature ((96) &#215; 10<sup>-8</sup> M for
+
         ((0.2980.030) × 10<sup>-6</sup> M) are
         GCN4 and (2.90.8) &#215; 10<sup>-8</sup> M for rGCN4) (Hollenbeck <i class="italic">et al.</i>, 2001). The
+
         approximately a factor 10 higher then those described in literature ((96) × 10<sup>-8</sup> M for
 +
         GCN4 and (2.90.8) × 10<sup>-8</sup> M for rGCN4) (Hollenbeck <i class="italic">et al.</i>, 2001). The
 
         differences could be due to the lower sensitivity of SYBR-Safe
 
         differences could be due to the lower sensitivity of SYBR-Safe
 
         staining compared to radio-labeled oligos.
 
         staining compared to radio-labeled oligos.
         <br><br>
+
         <br /><br />
 
         The FLAG-tag fusion to the N-terminus of proteins could potentially decrease binding affinity, likely due
 
         The FLAG-tag fusion to the N-terminus of proteins could potentially decrease binding affinity, likely due
 
         to steric hindrance affecting the interaction with DNA. Interestingly, the differences in binding affinity
 
         to steric hindrance affecting the interaction with DNA. Interestingly, the differences in binding affinity
Line 480: Line 501:
 
         dimerization of the proteins, which is necessary for DNA binding. To further investigate this, the
 
         dimerization of the proteins, which is necessary for DNA binding. To further investigate this, the
 
         FLAG-tag can be cleaved using an enterokinase and potential changes in binding affinity analyzed
 
         FLAG-tag can be cleaved using an enterokinase and potential changes in binding affinity analyzed
 +
      </p>
 +
    </section>
 +
    <section id="4.3">
 +
      <h2>4.3 <i>In Silico</i> Characterization using DaVinci</h2>
 +
      <p>
 +
        We developed the in silico model <a href="https://2024.igem.wiki/heidelberg/model" target="_blank">DaVinci</a>
 +
        for rapid engineering
 +
        and development of our PiCasSO system.
 +
        DaVinci acts as a digital twin to PiCasSO, designed to understand the forces acting on our system,
 +
        refine experimental parameters, and find optimal connections between protein staples and target DNA.
 +
        We calibrated DaVinci with literature and our own experimental affinity data obtained via EMSA assays and
 +
        purified
 +
        proteins. This enabled us to simulate enhancer hijacking in silico, providing valuable input for the design of
 +
        further
 +
        experiments. Additionally, we apply the same approach to our part collection.
 +
        DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged
 +
        dna
 +
        dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the
 +
        dna-binding
 +
        interaction.
 +
      </p>
 +
      <p>
 +
        When selecting a peptide linker, both length and rigidity are important considerations. These linkers can
 +
        determine
 +
        function and dynamics of the whole construct. We selected seven peptide linkers from the literature to cover a
 +
        broad
 +
        range of physical properties (Chen et al., 2013). We tested these linkers first on our mini staples, which
 +
        allowed for
 +
        quicker and easier implementation before moving to the more complex Cas staples.
 +
      </p>
 +
      <div class="thumb">
 +
        <div class="thumbinner" style="width:80%">
 +
          <img alt="" src="" style="width:99%;" class="thumbimage" />
 +
          <div class="thumbcaption">
 +
            <i>
 +
              <b>Figure 6: Variation of linkers connecting our mini staples.</b>
 +
              Panels <b>A</b> (<a href=https://parts.igem.org/Part:BBa_K5237007>GCN4</a>) and
 +
              <b>B</b> (<a href=https://parts.igem.org/Part:BBa_K5237008>rGCN4</a>) show orientations of the leucine
 +
              zipper, each bound to DNA.
 +
              Panels <b>C</b> to <b>I</b> show orientations of the leucine zipper, each bound to DNA.
 +
              Panels <b>C</b> to <b>I</b> display linker variations colored by their pLDDT confidence score,
 +
              which serves as a surrogate for chain flexibility (Akdel <i>et al.</i>, 2022).
 +
              Note that panels <b>H</b> and <b>I</b> are not bound to the second DNA strand.
 +
              All structures were predicted using the AlphaFold server (Google DeepMind, 2024)
 +
            </i>
 +
          </div>
 +
        </div>
 +
      </div>
 +
      <p>
 +
        We assessed the flexibility and rigidity of our constructs through the pLDDT values assigned
 +
        during the predictions. Figure 6 illustrates the variation in linkers using the ('GGGGS')<sub>n</sub>
 +
        sequence for flexible linkers and the ('EAAAK')<sub>n</sub> sequence for rigid linkers (Arai <i>et al.</i>,
 +
        2001).
 +
        The predictions are colored by their pLDDT scores, which act as a surrogate measure of
 +
        chain rigidity (Akdel <i>et al.</i>, 2022; Guo et al., 2022). The construct <b>C</b> was tested as part
 +
        BBa_K5237009 in the Wetlab - it did not bind DNA on any side as the structure is to rigid
 +
        which hinders dimerisation of the two subunits.
 
       </p>
 
       </p>
 
     </section>
 
     </section>
 
   </section>
 
   </section>
</section>
+
  <section id="5">
<section id="5">
+
    <h1>5. References</h1>
  <h1>5. References</h1>
+
    <p>Akdel, M., Pires, D. E. V., Pardo, E. P., Janes, J., Zalevsky, A. O., Meszaros, B., Bryant, P., Good, L. L.,
  <p>Arndt, K., & Fink, G. R. (1986). GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5’ TGACTC 3’ sequences. <em>Proceedings of the National Academy of Sciences, 83</em>(22), 8516–8520. <a href="https://doi.org/10.1073/pnas.83.22.8516" target="_blank">https://doi.org/10.1073/pnas.83.22.8516</a></p>
+
      Laskowski, R. A., Pozzati, G., Shenoy, A., Zhu, W., Kundrotas, P., Serra, V. R., Rodrigues, C. H. M., Dunham, A.
 +
      S., Burke, D., Borkakoti, N., Velankar, S., … Beltrao, P. (2022). A structural biology community assessment of
 +
      AlphaFold2 applications. <i>Nat Struct Mol Biol</i>, 29(11), 1056–1067. <a
 +
        href="https://doi.org/10.1038/s41594-022-00849-w" target="_blank">https://doi.org/10.1038/s41594-022-00849-w</a>
 +
    </p>
 +
    <p>Arai, R., Ueda, H., Kitayama, A., Kamiya, N., & Nagamune, T. (2001). Design of the linkers which effectively
 +
      separate domains of a bifunctional fusion protein. <i>Protein Engineering, Design and Selection</i>, 14(8),
 +
      529–532. <a href="https://doi.org/10.1093/protein/14.8.529"
 +
        target="_blank">https://doi.org/10.1093/protein/14.8.529</a></p>
 +
    <p>Arndt, K., &amp; Fink, G. R. (1986). GCN4 protein, a positive transcription factor in yeast, binds general
 +
      control promoters at all 5’ TGACTC 3’ sequences. <em>Proceedings of the National Academy of Sciences,
 +
        83</em>(22),
 +
      8516–8520. <a href="https://doi.org/10.1073/pnas.83.22.8516"
 +
        target="_blank">https://doi.org/10.1073/pnas.83.22.8516</a></p>
 +
    <p>Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality.
 +
      <i>Advanced Drug Delivery Reviews</i>, 65(10), 1357–1369. <a href="https://doi.org/10.1016/j.addr.2012.09.039"
 +
        target="_blank">https://doi.org/10.1016/j.addr.2012.09.039</a>
 +
    </p>
  
  <p>Ellenberger, T. E., Brandl, C. J., Struhl, K., & Harrison, S. C. (1992). The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: Crystal structure of the protein-DNA complex. <em>Cell, 71</em>(7), 1223–1237. <a href="https://doi.org/10.1016/s0092-8674(05)80070-4" target="_blank">https://doi.org/10.1016/s0092-8674(05)80070-4</a></p>
+
    <p>Google DeepMind. (2024). AlphaFold Server. <a href="https://alphafoldserver.com/terms"
 
+
        target="_blank">https://alphafoldserver.com/terms</a></p>
  <p>Hollenbeck, J. J., Gurnon, D. G., Fazio, G. C., Carlson, J. J., & Oakley, M. G. (2001). A GCN4 Variant with a C-Terminal Basic Region Binds to DNA with Wild-Type Affinity. <em>Biochemistry, 40</em>(46), 13833–13839.</p>
+
 
 
+
    <p>Guo, H.-B., Perminov, A., Bekele, S., Kedziora, G., Farajollahi, S., Varaljay, V., Hinkle, K., Molinero, V.,
  <p>Hollenbeck, J. J., McClain, D. L., & Oakley, M. G. (2002). The role of helix stabilizing residues in GCN4 basic region folding and DNA binding. <em>Protein Science, 11</em>(11), 2740–2747. <a href="https://doi.org/10.1110/ps.0211102" target="_blank">https://doi.org/10.1110/ps.0211102</a></p>
+
      Meister, K., Hung, C., Dennis, P., Kelley-Loughnane, N., & Berry, R. (2022). AlphaFold2 models indicate that
 
+
      protein sequence determines both structure and dynamics. <i>Scientific Reports</i>, 12(1), 10696. <a
  <p>Hollenbeck, J. J., & Oakley, M. G. (2000). GCN4 Binds with High Affinity to DNA Sequences Containing a Single Consensus Half-Site. <em>Biochemistry, 39</em>(21), 6380–6389. <a href="https://doi.org/10.1021/bi992705n" target="_blank">https://doi.org/10.1021/bi992705n</a></p>
+
        href="https://doi.org/10.1038/s41598-022-14382-9" target="_blank">https://doi.org/10.1038/s41598-022-14382-9</a>
 
+
    </p>
  <p>Liu, J., Zheng, Q., Deng, Y., Cheng, C.-S., Kallenbach, N. R., & Lu, M. (2006). A seven-helix coiled coil. <em>Proceedings of the National Academy of Sciences, 103</em>(42), 15457–15462. <a href="https://doi.org/10.1073/pnas.0604871103" target="_blank">https://doi.org/10.1073/pnas.0604871103</a></p>
+
    <p>Ellenberger, T. E., Brandl, C. J., Struhl, K., &amp; Harrison, S. C. (1992). The GCN4 basic region leucine
 
+
      zipper
  <p>Lupas, A. N., Bassler, J., & Dunin-Horkawicz, S. (2017). The Structure and Topology of α-Helical Coiled Coils. <em>Fibrous Proteins: Structures and Mechanisms, 82</em>, 95–129. <a href="https://doi.org/10.1007/978-3-319-49674-0_4" target="_blank">https://doi.org/10.1007/978-3-319-49674-0_4</a></p>
+
      binds DNA as a dimer of uninterrupted alpha helices: Crystal structure of the protein-DNA complex. <em>Cell,
 
+
        71</em>(7), 1223–1237. <a href="https://doi.org/10.1016/s0092-8674(05)80070-4"
  <p>Woolfson, D. N. (2023). Understanding a protein fold: The physics, chemistry, and biology of α-helical coiled coils. <em>Journal of Biological Chemistry, 299</em>(4), 104579. <a href="https://doi.org/10.1016/j.jbc.2023.104579" target="_blank">https://doi.org/10.1016/j.jbc.2023.104579</a></p>
+
        target="_blank">https://doi.org/10.1016/s0092-8674(05)80070-4</a></p>
 
+
    <p>Hollenbeck, J. J., Gurnon, D. G., Fazio, G. C., Carlson, J. J., &amp; Oakley, M. G. (2001). A GCN4 Variant with
</section>
+
      a
</body>
+
      C-Terminal Basic Region Binds to DNA with Wild-Type Affinity. <em>Biochemistry, 40</em>(46), 13833–13839.</p>
 +
    <p>Hollenbeck, J. J., McClain, D. L., &amp; Oakley, M. G. (2002). The role of helix stabilizing residues in GCN4
 +
      basic region folding and DNA binding. <em>Protein Science, 11</em>(11), 2740–2747. <a
 +
        href="https://doi.org/10.1110/ps.0211102" target="_blank">https://doi.org/10.1110/ps.0211102</a></p>
 +
    <p>Hollenbeck, J. J., &amp; Oakley, M. G. (2000). GCN4 Binds with High Affinity to DNA Sequences Containing a
 +
      Single
 +
      Consensus Half-Site. <em>Biochemistry, 39</em>(21), 6380–6389. <a href="https://doi.org/10.1021/bi992705n"
 +
        target="_blank">https://doi.org/10.1021/bi992705n</a></p>
 +
    <p>Liu, J., Zheng, Q., Deng, Y., Cheng, C.-S., Kallenbach, N. R., &amp; Lu, M. (2006). A seven-helix coiled coil.
 +
      <em>Proceedings of the National Academy of Sciences, 103</em>(42), 15457–15462. <a
 +
        href="https://doi.org/10.1073/pnas.0604871103" target="_blank">https://doi.org/10.1073/pnas.0604871103</a>
 +
    </p>
 +
    <p>Lupas, A. N., Bassler, J., &amp; Dunin-Horkawicz, S. (2017). The Structure and Topology of α-Helical Coiled
 +
      Coils. <em>Fibrous Proteins: Structures and Mechanisms, 82</em>, 95–129. <a
 +
        href="https://doi.org/10.1007/978-3-319-49674-0_4"
 +
        target="_blank">https://doi.org/10.1007/978-3-319-49674-0_4</a></p>
 +
    <p>Woolfson, D. N. (2023). Understanding a protein fold: The physics, chemistry, and biology of α-helical coiled
 +
      coils. <em>Journal of Biological Chemistry, 299</em>(4), 104579. <a
 +
        href="https://doi.org/10.1016/j.jbc.2023.104579" target="_blank">https://doi.org/10.1016/j.jbc.2023.104579</a>
 +
    </p>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
  </section>
  
 
</html>
 
</html>

Revision as of 00:29, 1 October 2024

BBa_K5237009

Mini staple:

The Mini staple is a fusion of GCN4 and rGCN4, engineered to bind two DNA strands simultaneously and induce proximity. With the Mini staples, we aimed to engineer a smaller alternative to the simple staples.

 



The PICasSO Toolbox
Figure 1: How our part collection can be used to engineer new staples


Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene regulation, cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the 3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular toolbox based on various DNA-binding proteins to address this issue.

The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation. Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples, ensuring functionality in vitro and in vivo. We took special care to include parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts.

At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding proteins include our finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling and can be further engineered to create alternative, simpler and more compact staples.
(ii) As functional elements, we list additional parts that enhance the functionality of our Cas and Basic staples. These consist of protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling in vivo. Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that support the use of our custom readout systems. These include components of our established FRET-based proximity assay system, enabling users to confirm accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking in mammalian cells.

The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their own custom Cas staples, enabling further optimization and innovation.

Our part collection includes:

DNA-binding proteins: The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring easy assembly.
BBa_K5237000 fgRNA Entry vector MbCas12a-SpCas9 Entryvector for simple fgRNA cloning via SapI
BBa_K5237001 Staple subunit: dMbCas12a-Nucleoplasmin NLS Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple
BBa_K5237002 Staple subunit: SV40 NLS-dSpCas9-SV40 NLS Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple
BBa_K5237003 Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close proximity
BBa_K5237004 Staple subunit: Oct1-DBD Staple subunit that can be combined to form a functional staple, for example with TetR.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237005 Staple subunit: TetR Staple subunit that can be combined to form a functional staple, for example with Oct1.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237006 Simple staple: TetR-Oct1 Functional staple that can be used to bring two DNA strands in close proximity
BBa_K5237007 Staple subunit: GCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237008 Staple subunit: rGCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237009 Mini staple: bGCN4 Assembled staple with minimal size that can be further engineered
Functional elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications
BBa_K5237010 Cathepsin B-cleavable Linker: GFLG Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples
BBa_K5237011 Cathepsin B Expression Cassette Expression Cassette for the overexpression of cathepsin B
BBa_K5237012 Caged NpuN Intein A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation. Can be used to create functionalized staples units
BBa_K5237013 Caged NpuC Intein A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation. Can be used to create functionalized staples units
BBa_K5237014 fgRNA processing casette Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprograming
BBa_K5237015 Intimin anti-EGFR Nanobody Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large constructs
BBa_K4643003 incP origin of transfer Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery
Readout Systems: FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells enabling swift testing and easy development for new systems
BBa_K5237016 FRET-Donor: mNeonGreen-Oct1 FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize DNA-DNA proximity
BBa_K5237017 FRET-Acceptor: TetR-mScarlet-I Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize DNA-DNA proximity
BBa_K5237018 Oct1 Binding Casette DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay
BBa_K5237019 TetR Binding Cassette DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay
BBa_K5237020 Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker
BBa_K5237021 NLS-Gal4-VP64 Trans-activating enhancer, that can be used to simulate enhancer hijacking
BBa_K5237022 mCherry Expression Cassette: UAS, minimal Promotor, mCherry Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker
BBa_K5237023 Oct1 - 5x UAS binding casette Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay
BBa_K5237024 TRE-minimal promoter- firefly luciferase Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for simulated enhancer hijacking

1. Sequence overview

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 175
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

2. Usage and Biology

Small basic-region leucine zipper (bZip) proteins are characterized by their DNA-binding. The bZip motif consists of a coiled-coil leucine zipper dimerization domain, and a highly charged basic region that directly contacts and binds to DNA (Hollenbeck & Oakley, 2000). One well characterized example is the General Control Protein 4 (GCN4), a well-characterized transcriptional activator from yeast (Arndt & Fink, 1986). At its N-terminus, GCN4 contains basic residues, the so-called bZip domain, through which it binds specifically to the CRE (cyclic AMP response element) DNA sequence (5' ATGACGTCAT 3') (Hollenbeck et al., 2002). A variant of GCN4 with the DNA binding bZip-domain at the C-terminus (rGCN4) has been engineered to bind to the inverted CRE sequence, INV2 (5' GTCAtaTGAC 3', upper case letters indicate direct interaction between protein and DNA) with similar affinity (Hollenbeck et al., 2001). By genetically fusing GCN4 to rGCN4, we created a small bivalent DNA binding staple with less than 150 amino acids, which was for its DNA binding and stapling capabilities.

3. Assembly and part evolution

The amino acid sequence for GCN4 and rGCN4 was obtained from literature (Hollenbeck et al. 2001), and codon-optimized for Escherichia coli. The two leucine zipper were combined with a GSG linker harbouring a BamHI site to adapt the construct with different linker designs. A FLAG-tag (DYKDDDDK) was added to the N-terminus for protein purification. The FLAG-tag can be cleaved off using an Enterokinase, if necessary. The FLAG-GCN4 sequence was cloned into a T7 expression vector and expressed using E. coli BL21 (DE3) cells.

4. Results

The current version of the part with GCN4-rGCN4 fusion, linked by a GSG peptide linker has not demonstrated any DNA binding in the tests conducted thus far. Nevertheless, we belive the part to still be a valuable addition, as it can be further engineered with different linker types to create a functioning staple. Through dry lab modelling, various linker designs have already been simulated to predict improved dimerization and DNA binding.

4.1 Protein Expression and Purification

The bZip proteins GCN4, rGCN4 and their fusion bGCN4 were fused N-terminally to a FLAG-tag (DYKDDDDK). All proteins could be readily expressed under the T7 promoter in E. coli BL21 DE3 and purified with Anti-FLAG affinity columns. The purity of the proteins was confirmed by SDS-PAGE (Figure 2).

Figure 2: SDS-PAGE analysis of protein purification.Analysis of fractions eluate of purified protein taken during Anti-FLAG affinity chromatography 1 µL of each sample was prepared with Leammli buffer and loaded on 4-15% TGX-Gel. Correct bands of interest are highlighted by red

4.2 Electrophoretic Mobility Shift Assay

Figure 3: Overview Image of Electrophoretic Mobility Shift Assay (EMSA)

The Electrophoretic mobility shift assay (EMSA) is a widely adopted method used to study DNA-protein interactions. EMSA functions on the basis that nucleic acids bound to proteins have reduced electrophoretic mobility, compared to their counterpart. (Hellman & Fried, 2007). Mobility-shift assays can both be used to qualitatively assess DNA binding capabilities or quantitatively to determine binding stoichiometry and kinetics such as the apparent dissociation constant (Kd) (Fried, 1989).

4.2.1 Qualitative DNA binding analysis

To asses possible DNA binding, a qualitative EMSA was performed with the purified proteins. The same binding buffer conditions were used, as previously desribed for GCN4 and rGCN4 (Hollenbeck et al. 2001). DNA binding could only be shown for GCN4 and rGCN4, no visible band was observed for the bGCN4 fusion protein (Figure 4).

Figure 4: Qualitative EMSA DNA binding 0.5 µM of annealed oligos (20 bp) containing either one CRE or INVii binding site were incubated with 200 µM of protein and equilibrated in binding buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na 2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 mM EDTA). Gel electorphoresis was performed with a pre-equilibrated TGX-Gel in TBE running buffer. Gel-bands were visualized by staining with SYBR Safe and imaged with an UV transilluminator.

4.2.2 Quantitative DNA binding analysis

To further analyze DNA binding, quantitative shift assays were performed for GCN4 and rGCN4. Here 0.5 µM DNA were incubated with varying concentrations of protein until equilibration. After electrophoresis, bands were stained with SYBR-Safe and quantified based on pixel intensity. The obtained values were fitted to equation 1, describing formation of a 2:1 protein-DNA complex:

Θapp = Θmin + (Θmax - Θmin) × (Ka2 [L]tot2) / (1 + Ka2 [L]tot2) Equation 1

Here [L]tot describes the total protein monomer concentration, Ka corresponds to the apparent monomeric equilibration constant. The Θmin/max values are the experimentally determined site saturation values (For this experiment 0 and 1 were chosen for min and max respectively). GCN4 binds to its optimal DNA binding motif with an apparent dissociation constant Kk of (0.2930.033)×10-6 M, which is almost identical to the rGCN4 binding affinity to INVii a d of (0.2980.030)×10-6 M.

Figure 5: Kd Calculation of GCN4 and rGCN4 Quantitative assessment of binding affinity for GCN4 and rGCN4. Proteins of varying concentrations were incubated with 0.5 µM DNA (20 bp, containing one binding site for CRE or INVii) in Binding buffer 1, and the bound fraction analyzed by dividing pixel intensity of bound fraction with pixel intensity of bound and unbound fraction using ImageJ. At least three separate measurements were conducted for each data point. Values are presented as mean +/- SD

To better understand the proteins, quantitative analysis was done to determine the apparent dissociation constant for GCN4 and rGCN4.
For the purified proteins GCN4, rGCN4 and the fusion bGCN4 a qualitative gel was run with high protein concentration (Figure 3). Bands for GCN4 and rGCN4 were visible but no band for bGCN4 could be detected, indicating a lack of DNA binding. This suggests that the dimerization, necessary for DNA binding, is disrupted by the GSG-linker (Ellenberger et al., 1992; Liu et al., 2006; Lupas et al., 2017; Woolfson, 2023). To better understand possible problems in dimerization circular dichroism can be used to analyze secondary structure and proper coiled coil formation (Greenfield, 2006). Further engineering can be done by testing out various linkers with specific properties to ensure correct folding and dimerization (Chen et al., 2013). The apparent binding kinetics calculated for GCN4 ((0.2930.033) × 10-6 M) and rGCN4 ((0.2980.030) × 10-6 M) are approximately a factor 10 higher then those described in literature ((96) × 10-8 M for GCN4 and (2.90.8) × 10-8 M for rGCN4) (Hollenbeck et al., 2001). The differences could be due to the lower sensitivity of SYBR-Safe staining compared to radio-labeled oligos.

The FLAG-tag fusion to the N-terminus of proteins could potentially decrease binding affinity, likely due to steric hindrance affecting the interaction with DNA. Interestingly, the differences in binding affinity between GCN4 and rGCN4 appear negligible. Since GCN4 binds to DNA via its N-terminus and rGCN4 binds C-terminally, the FLAG-tag likely does not directly influence DNA binding. However, it may influence the dimerization of the proteins, which is necessary for DNA binding. To further investigate this, the FLAG-tag can be cleaved using an enterokinase and potential changes in binding affinity analyzed

4.3 In Silico Characterization using DaVinci

We developed the in silico model DaVinci for rapid engineering and development of our PiCasSO system. DaVinci acts as a digital twin to PiCasSO, designed to understand the forces acting on our system, refine experimental parameters, and find optimal connections between protein staples and target DNA. We calibrated DaVinci with literature and our own experimental affinity data obtained via EMSA assays and purified proteins. This enabled us to simulate enhancer hijacking in silico, providing valuable input for the design of further experiments. Additionally, we apply the same approach to our part collection. DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged dna dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the dna-binding interaction.

When selecting a peptide linker, both length and rigidity are important considerations. These linkers can determine function and dynamics of the whole construct. We selected seven peptide linkers from the literature to cover a broad range of physical properties (Chen et al., 2013). We tested these linkers first on our mini staples, which allowed for quicker and easier implementation before moving to the more complex Cas staples.

Figure 6: Variation of linkers connecting our mini staples. Panels A (GCN4) and B (rGCN4) show orientations of the leucine zipper, each bound to DNA. Panels C to I show orientations of the leucine zipper, each bound to DNA. Panels C to I display linker variations colored by their pLDDT confidence score, which serves as a surrogate for chain flexibility (Akdel et al., 2022). Note that panels H and I are not bound to the second DNA strand. All structures were predicted using the AlphaFold server (Google DeepMind, 2024)

We assessed the flexibility and rigidity of our constructs through the pLDDT values assigned during the predictions. Figure 6 illustrates the variation in linkers using the ('GGGGS')n sequence for flexible linkers and the ('EAAAK')n sequence for rigid linkers (Arai et al., 2001). The predictions are colored by their pLDDT scores, which act as a surrogate measure of chain rigidity (Akdel et al., 2022; Guo et al., 2022). The construct C was tested as part BBa_K5237009 in the Wetlab - it did not bind DNA on any side as the structure is to rigid which hinders dimerisation of the two subunits.

5. References

Akdel, M., Pires, D. E. V., Pardo, E. P., Janes, J., Zalevsky, A. O., Meszaros, B., Bryant, P., Good, L. L., Laskowski, R. A., Pozzati, G., Shenoy, A., Zhu, W., Kundrotas, P., Serra, V. R., Rodrigues, C. H. M., Dunham, A. S., Burke, D., Borkakoti, N., Velankar, S., … Beltrao, P. (2022). A structural biology community assessment of AlphaFold2 applications. Nat Struct Mol Biol, 29(11), 1056–1067. https://doi.org/10.1038/s41594-022-00849-w

Arai, R., Ueda, H., Kitayama, A., Kamiya, N., & Nagamune, T. (2001). Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Engineering, Design and Selection, 14(8), 529–532. https://doi.org/10.1093/protein/14.8.529

Arndt, K., & Fink, G. R. (1986). GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5’ TGACTC 3’ sequences. Proceedings of the National Academy of Sciences, 83(22), 8516–8520. https://doi.org/10.1073/pnas.83.22.8516

Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039

Google DeepMind. (2024). AlphaFold Server. https://alphafoldserver.com/terms

Guo, H.-B., Perminov, A., Bekele, S., Kedziora, G., Farajollahi, S., Varaljay, V., Hinkle, K., Molinero, V., Meister, K., Hung, C., Dennis, P., Kelley-Loughnane, N., & Berry, R. (2022). AlphaFold2 models indicate that protein sequence determines both structure and dynamics. Scientific Reports, 12(1), 10696. https://doi.org/10.1038/s41598-022-14382-9

Ellenberger, T. E., Brandl, C. J., Struhl, K., & Harrison, S. C. (1992). The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: Crystal structure of the protein-DNA complex. Cell, 71(7), 1223–1237. https://doi.org/10.1016/s0092-8674(05)80070-4

Hollenbeck, J. J., Gurnon, D. G., Fazio, G. C., Carlson, J. J., & Oakley, M. G. (2001). A GCN4 Variant with a C-Terminal Basic Region Binds to DNA with Wild-Type Affinity. Biochemistry, 40(46), 13833–13839.

Hollenbeck, J. J., McClain, D. L., & Oakley, M. G. (2002). The role of helix stabilizing residues in GCN4 basic region folding and DNA binding. Protein Science, 11(11), 2740–2747. https://doi.org/10.1110/ps.0211102

Hollenbeck, J. J., & Oakley, M. G. (2000). GCN4 Binds with High Affinity to DNA Sequences Containing a Single Consensus Half-Site. Biochemistry, 39(21), 6380–6389. https://doi.org/10.1021/bi992705n

Liu, J., Zheng, Q., Deng, Y., Cheng, C.-S., Kallenbach, N. R., & Lu, M. (2006). A seven-helix coiled coil. Proceedings of the National Academy of Sciences, 103(42), 15457–15462. https://doi.org/10.1073/pnas.0604871103

Lupas, A. N., Bassler, J., & Dunin-Horkawicz, S. (2017). The Structure and Topology of α-Helical Coiled Coils. Fibrous Proteins: Structures and Mechanisms, 82, 95–129. https://doi.org/10.1007/978-3-319-49674-0_4

Woolfson, D. N. (2023). Understanding a protein fold: The physics, chemistry, and biology of α-helical coiled coils. Journal of Biological Chemistry, 299(4), 104579. https://doi.org/10.1016/j.jbc.2023.104579