Difference between revisions of "Part:BBa K5237004"

Line 4: Line 4:
 
<partinfo>BBa_K5237004</partinfo>
 
<partinfo>BBa_K5237004</partinfo>
 
<!--################################-->
 
<!--################################-->
 
 
<!--Add changes below--->
 
<!--Add changes below--->
 
<html>
 
<html>
Line 29: Line 28:
 
     border: 0.5px solid black;
 
     border: 0.5px solid black;
 
     border-collapse: collapse;
 
     border-collapse: collapse;
 +
    padding: 5px;
 
   }
 
   }
  
   th,
+
   .thumbcaption {
   td {
+
    text-align: justify !important;
     padding: 1.5px;
+
  }
 +
 
 +
 
 +
  a[href ^="https://"],
 +
   .link-https {
 +
    background: none !important;
 +
     padding-right: 0px !important;
 
   }
 
   }
 
</style>
 
</style>
Line 42: Line 48:
 
     <h1>Half-Staple: Oct1-DBD</h1>
 
     <h1>Half-Staple: Oct1-DBD</h1>
 
     <p>Oct1-DBD is the DNA-binding domain of the human Oct1 transcription factor, it can be readily fused with other
 
     <p>Oct1-DBD is the DNA-binding domain of the human Oct1 transcription factor, it can be readily fused with other
       DNA-bindig proteins to form a functional staple for DNA-DNA proximity. We used this part as a component for our Simple
+
       DNA-bindig proteins to form a functional staple for DNA-DNA proximity. We used this part as a component for our
       staple (<a href=https://parts.igem.org/Part:BBa_K5237006 target="_blank">BBa_K5237006</a>) resulting in a bivalent DNA
+
      Simple
 +
       staple (<a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a>) resulting in a
 +
      bivalent DNA
 
       binding staple, and also fused to mNeonGreen, as part of a FRET readout system (<a
 
       binding staple, and also fused to mNeonGreen, as part of a FRET readout system (<a
         href=https://parts.igem.org/Part:BBa_K5237016 target="_blank">BBa_K5237016</a>).
+
         href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a>).
 
     </p>
 
     </p>
 
+
     <p></p>
     <p>&nbsp;</p>
+
 
   </section>
 
   </section>
   <div id="toc" class="toc">
+
   <div class="toc" id="toc">
 
     <div id="toctitle">
 
     <div id="toctitle">
 
       <h1>Contents</h1>
 
       <h1>Contents</h1>
Line 66: Line 73:
 
       <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
 
       <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
 
             class="toctext">Results</span></a>
 
             class="toctext">Results</span></a>
 +
        <ul>
 +
          <li class="toclevel-2 tocsection-4"><a href="#4.1"><span class="tocnumber">4.1</span> <span
 +
                class="toctext">Protein expression and EMSA</span></a>
 +
          </li>
 +
          <li class="toclevel-2 tocsection-5"><a href="#4.2"><span class="tocnumber">4.2</span> <span
 +
                class="toctext"><i>In Silico</i> Characterization using DaVinci</span></a>
 +
        </ul>
 
       </li>
 
       </li>
 
       <li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span
 
       <li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span
Line 73: Line 87:
 
   </div>
 
   </div>
 
   <section>
 
   <section>
 +
    <p><br /><br /></p>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
    <p><br></p>
+
     <div class="thumb" style="margin-top:10px;"></div>
     <div class="thumb"></div>
+
    <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage"
      <div class="thumbinner" style="width:550px"><img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" style="width:99%;" class="thumbimage">
+
        src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg"
        <div class="thumbcaption">
+
        style="width:99%;" />
          <i><b>Figure 1: Example how the part collection can be used to engineer new staples</b></i>
+
      <div class="thumbcaption">
        </div>
+
        <i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
   
 
  
 
     <p>
 
     <p>
       <br>
+
       <br />
       The 3D organization of the genome plays a crucial role in regulating gene expression in eukaryotic cells,
+
       Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene
       impacting cellular behavior, evolution, and disease. Beyond the linear DNA sequence, the spatial arrangement of
+
       regulation,
       chromatin, influenced by DNA-DNA interactions, shapes pathways of gene regulation. However, the tools to precisely
+
       cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture
      manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the
+
      remain limited, rendering it challenging to explore the full potential of the
 
       3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
 
       3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
 
       toolbox based on various DNA-binding proteins to address this issue.
 
       toolbox based on various DNA-binding proteins to address this issue.
 
 
     </p>
 
     </p>
 
     <p>
 
     <p>
Line 101: Line 114:
 
       Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
 
       Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
 
       testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
 
       testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
       parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts
+
       parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts.
 
     </p>
 
     </p>
 
+
     <p>At its heart, the PICasSO part collection consists of three categories. <br /><b>(i)</b> Our <b>DNA-binding
     <p>At its heart, the PICasSO part collection consists of three categories. <br><b>(i)</b> Our <b>DNA-binding proteins</b>
+
        proteins</b>
 
       include our
 
       include our
 
       finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
 
       finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
       new Cas staples in the future. We also include our simple staples that serve as controls for successful stapling
+
       new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling
       and can be further engineered to create alternative, simpler and more compact staples. <br>
+
       and can be further engineered to create alternative, simpler and more compact staples. <br />
       <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and Basic staples. These
+
       <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and
 +
      Basic staples. These
 
       consist of
 
       consist of
 
       protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>.
 
       protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>.
       Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our
+
       Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs
       interkingdom conjugation system. <br>
+
      with our
       <b>(iii)</b> As the final component of our collection, we provide parts that support the use of our <b>custom readout
+
       interkingdom conjugation system. <br />
 +
       <b>(iii)</b> As the final category of our collection, we provide parts that support the use of our <b>custom
 +
        readout
 
         systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
 
         systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
 
       confirm
 
       confirm
 
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
 
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
       readout via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking.
+
       readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking
 +
      in mammalian cells.
 
     </p>
 
     </p>
 
     <p>
 
     <p>
       The following table gives a complete overview of all parts in our PICasSO toolbox. The highlighted parts showed
+
       The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark
      exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the
+
        style="background-color: #FFD700; color: black;">The highlighted parts showed
 +
        exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other parts in
 +
      the
 
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
 
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
       own custom Cas staples, enabling further optimization and innovation.<br>
+
       own custom Cas staples, enabling further optimization and innovation.<br />
 
     </p>
 
     </p>
 
     <p>
 
     <p>
       <font size="4"><b>Our part collection includes:</b></font><br>
+
       <font size="4"><b>Our part collection includes:</b></font><br />
 
     </p>
 
     </p>
 
+
     <table style="width: 90%; padding-right:10px;">
     <table style="width: 90%;">
+
       <td align="left" colspan="3"><b>DNA-binding proteins: </b>
       <td colspan="3" align="left"><b>DNA-binding proteins: </b>
+
 
         The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
 
         The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
 
         easy assembly.</td>
 
         easy assembly.</td>
Line 137: Line 155:
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
           <td>fgRNA Entryvector MbCas12a-SpCas9</td>
+
           <td>fgRNA Entry vector MbCas12a-SpCas9</td>
 
           <td>Entryvector for simple fgRNA cloning via SapI</td>
 
           <td>Entryvector for simple fgRNA cloning via SapI</td>
 
         </tr>
 
         </tr>
         <tr>
+
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
 
           <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
 
           <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with fgRNA and dCas9 </td>
+
           <td>Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple</td>
 
         </tr>
 
         </tr>
         <tr>
+
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 
           <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
 
           <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with our fgRNA or dCas12a
+
           <td>Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple
 
           </td>
 
           </td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
           <td>Cas-Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
+
           <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
           <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands in close proximity
+
           <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close
 +
            proximity
 
           </td>
 
           </td>
 
         </tr>
 
         </tr>
Line 160: Line 179:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
 
           <td>Staple subunit: Oct1-DBD</td>
 
           <td>Staple subunit: Oct1-DBD</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br>
+
           <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br />
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
         </tr>
 
         </tr>
Line 166: Line 185:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
 
           <td>Staple subunit: TetR</td>
 
           <td>Staple subunit: TetR</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br>
+
           <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br />
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
           <td>Simple taple: TetR-Oct1</td>
+
           <td>Simple staple: TetR-Oct1</td>
 
           <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
           <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
         </tr>
 
         </tr>
Line 191: Line 210:
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
       <td colspan="3" align="left"><b>Functional elements: </b>
+
       <td align="left" colspan="3"><b>Functional elements: </b>
         Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization
+
         Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization
         for custom applications.</td>
+
         for custom applications</td>
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
           <td>Cathepsin B-Cleavable Linker (GFLG)</td>
+
           <td>Cathepsin B-cleavable Linker: GFLG</td>
           <td>Cathepsin B cleavable peptide linker, that can be used to combine two staple subunits ,to make responsive
+
           <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive
 
             staples</td>
 
             staples</td>
 
         </tr>
 
         </tr>
Line 204: Line 223:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
           <td>Cathepsin B Expression Cassette</td>
 
           <td>Cathepsin B Expression Cassette</td>
           <td>Cathepsin B which can be selectively express to cut the cleavable linker</td>
+
           <td>Expression Cassette for the overexpression of cathepsin B</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
 
           <td>Caged NpuN Intein</td>
 
           <td>Caged NpuN Intein</td>
           <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
+
           <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation.
 +
            Can be used to create functionalized staples
 
             units</td>
 
             units</td>
 
         </tr>
 
         </tr>
Line 215: Line 235:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
 
           <td>Caged NpuC Intein</td>
 
           <td>Caged NpuC Intein</td>
           <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
+
           <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation.
 +
            Can be used to create functionalized staples
 
             units</td>
 
             units</td>
 
         </tr>
 
         </tr>
Line 221: Line 242:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
 
           <td>fgRNA processing casette</td>
 
           <td>fgRNA processing casette</td>
           <td>Processing casette to produce multiple fgRNAs from one transcript, can be used for multiplexing</td>
+
           <td>Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D
 +
            genome reprograming</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 230: Line 252:
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
       <td colspan="3" align="left"><b>Readout Systems: </b>
+
       <td align="left" colspan="3"><b>Readout Systems: </b>
 
         FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
 
         FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
         enabling swift testing and easy development for new systems.</td>
+
         enabling swift testing and easy development for new systems</td>
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
           <td><a href="https://parts.igem.org/Part:BBa_K52370016" target="_blank">BBa_K5237016</a></td>
+
           <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
 
           <td>FRET-Donor: mNeonGreen-Oct1</td>
 
           <td>FRET-Donor: mNeonGreen-Oct1</td>
           <td>Donor part for the FRET assay binding the Oct1 binding cassette. Can be used to visualize DNA-DNA
+
           <td>FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize
 +
            DNA-DNA
 
             proximity</td>
 
             proximity</td>
 
         </tr>
 
         </tr>
Line 249: Line 272:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
 
           <td>Oct1 Binding Casette</td>
 
           <td>Oct1 Binding Casette</td>
           <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
+
           <td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET
 
             proximity assay</td>
 
             proximity assay</td>
 
         </tr>
 
         </tr>
Line 260: Line 283:
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 
         <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
 
         <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
         <td>Readout system that responds to protease activity. It was used to test Cathepsin-B cleavable linker.</td>
+
         <td>Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker</td>
        </tr>
+
 
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
           <td>NLS-Gal4-VP64</td>
 
           <td>NLS-Gal4-VP64</td>
           <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking. </td>
+
           <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking</td>
 
         </tr>
 
         </tr>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 
         <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
 
         <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
         <td>Readout system for enhancer binding. It was used to test Cathepsin-B cleavable linker.</td>
+
         <td>Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker</td>
        </tr>
+
 
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 
           <td>Oct1 - 5x UAS binding casette</td>
 
           <td>Oct1 - 5x UAS binding casette</td>
           <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay.</td>
+
           <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 280: Line 303:
 
           <td>TRE-minimal promoter- firefly luciferase</td>
 
           <td>TRE-minimal promoter- firefly luciferase</td>
 
           <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
 
           <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
             simulated enhancer hijacking.</td>
+
             simulated enhancer hijacking</td>
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
 
     </table>
 
     </table>
    </p>
 
 
   </section>
 
   </section>
 
   <section id="1">
 
   <section id="1">
Line 292: Line 314:
  
 
</html>
 
</html>
 
 
<!--################################-->
 
<!--################################-->
<span class='h3bb'>Sequence and Features</span>
+
<span class="h3bb">Sequence and Features</span>
 
<partinfo>BBa_K5237004 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K5237004 SequenceAndFeatures</partinfo>
 
<!--################################-->
 
<!--################################-->
 
 
<html>
 
<html>
 
  
 
<body>
 
<body>
Line 312: Line 331:
 
     </p>
 
     </p>
 
     <p>In synthetic biology, Oct1-DBD was previously used for plasmid display technology due to its strong binding
 
     <p>In synthetic biology, Oct1-DBD was previously used for plasmid display technology due to its strong binding
       affinity (K<sub>D</sub> = 9 &#215; 10<sup>-11</sup> M). Proteins fused with Oct1-DBD showed increased expression
+
       affinity (K<sub>D</sub> = 9 × 10<sup>-11</sup> M). Proteins fused with Oct1-DBD showed increased expression
 
       and protein solubility
 
       and protein solubility
 
       (Parker <i>et al.</i> 2020).
 
       (Parker <i>et al.</i> 2020).
Line 327: Line 346:
 
     <p>The Oct1-DBD amino acid sequence was obtained from UniProt (<a href="https://www.uniprot.org/uniprot/P14859"
 
     <p>The Oct1-DBD amino acid sequence was obtained from UniProt (<a href="https://www.uniprot.org/uniprot/P14859"
 
         target="_blank">P14859</a>, POU domain, class 2, transcription factor 1)
 
         target="_blank">P14859</a>, POU domain, class 2, transcription factor 1)
       and DNA binding domain extracted based on information given from Park <i>et al.</i> 2013 & 2020.
+
       and DNA binding domain extracted based on information given from Park <i>et al.</i> 2013 &amp; 2020.
 
       An <i>E. coli</i> codon optimized DNA sequence was obtained through gene synthesis and used to clone further
 
       An <i>E. coli</i> codon optimized DNA sequence was obtained through gene synthesis and used to clone further
 
       constructs
 
       constructs
Line 334: Line 353:
 
   <section id="4">
 
   <section id="4">
 
     <h1>4. Results</h1>
 
     <h1>4. Results</h1>
     <p>Oct1 was N-terminally fused to the His6-mNeonGreen. The fusion protein was expressed from a T7 based expression
+
     <section id="4.1">
      plasmid and subsequently
+
      <h2>4.1 Protein expression and EMSA</h2>
      purified using metal affinity chromatography with Ni-NTA beads.(Figure 2, left)
+
      <p>Oct1 was N-terminally fused to the His6-mNeonGreen. The fusion protein was expressed from a T7 based expression
      DNA binding affinity was estimated with an electrophoretic mobility shift assay (EMSA). For this, three different
+
        plasmid and subsequently
      buffer conditions were tested (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na<sub>2</sub>HPO<sub>4</sub>, 1.8
+
        purified using metal affinity chromatography with Ni-NTA beads.(Figure 2, left)
      mM KH<sub>2</sub>HPO<sub>4</sub>,
+
        DNA binding affinity was estimated with an electrophoretic mobility shift assay (EMSA). For this, three
      0.1 % (v/v) IGEPAL&#174; CA-360, 1 mM EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl; NaP250:
+
        different
      Na<sub>2</sub>HPO<sub>4</sub>, 150 mM
+
        buffer conditions were tested (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na<sub>2</sub>HPO<sub>4</sub>,
      NaCl, 250 mM Imidazol). DNA binding could only be detected for Binding buffer 1. (Figure 2, right)
+
        1.8
    </p>
+
        mM KH<sub>2</sub>HPO<sub>4</sub>,
    <div class="thumb">
+
        0.1 % (v/v) IGEPAL® CA-360, 1 mM EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl; NaP250:
      <div class="thumbinner" styl="width:60%;">
+
        Na<sub>2</sub>HPO<sub>4</sub>, 150 mM
        <div style="display: flex; justify-content: center; border:none;">
+
        NaCl, 250 mM Imidazol). DNA binding could only be detected for Binding buffer 1. (Figure 2, right)
          <div>
+
      </p>
            <a href="Fig2_left">
+
      <div class="thumb">
               <img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/sds-page-mng-oct1-expression.svg"
+
        <div class="thumbinner" style="width:90%;">
                 style="height: 350px; width: auto; border:none;" class="thumbimage">
+
          <div style="display: flex; justify-content: center; border:none;">
            </a>
+
            <div>
 +
               <img alt="" class="thumbimage"
 +
                src="https://static.igem.wiki/teams/5237/wetlab-results/sds-page-mng-oct1-expression.svg"
 +
                 style="height: 300px; width: auto; border:none;" />
 +
            </div>
 +
            <div>
 +
              <a href="Fig2_right">
 +
                <img alt="" class="thumbimage"
 +
                  src="https://static.igem.wiki/teams/5237/wetlab-results/emsa-oct1-binding-buffer-optimization.svg"
 +
                  style="height: 300px; width: auto; border:none;" />
 +
              </a>
 +
            </div>
 
           </div>
 
           </div>
           <div>
+
           <div class="thumbcaption" style="text-align: justify;">
            <a href="Fig2_right">
+
            <i><b>Figure 2: Expression and DNA binding analysis of His<sub>6</sub>-mNeonGreen-Oct1-DBD.</b></i><br />
              <img alt=""
+
            <i><b>Left image:</b>Lane 1: raw lysate of E. coli expression culture after steril-filtration; Lane 2: Flow
                src="https://static.igem.wiki/teams/5237/wetlab-results/emsa-oct1-binding-buffer-optimization.svg"
+
              through of first wash
                style="height: 350px; width: auto; border:none;" class="thumbimage">
+
              (10 bed volumes of NaP10 (Na<sub>2</sub>HPO<sub>4</sub>, 150 mM NaCl, 10 mM Imidazol)); Lane 3: Flow
            </a>
+
              through
 +
              of
 +
              second wash (10 bed volumes of NaP20 (Na<sub>2</sub>HPO<sub>4</sub>, 150 mM NaCl, 20 mM Imidazol)); Lane
 +
              4:
 +
              Elution of purified protein.<br />
 +
              1 µL of each fraction was loaded after mixing and heating with 4x Laeemli buffer, on a 4-15% TGX-Gel. The
 +
              expected band size of the protein is 56 840.23 Da, highlighted in red on the gel.<br />
 +
              <b>Right image</b> Purified mNeonGreen-Oct1 fusion-protein (1000 nM, 100 nM or 10 nM) were equilibrated
 +
              with 0.5 µM DNA,
 +
              containing three Oct1 binding sites, in different buffer compositions.
 +
              (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na 2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1
 +
              mM
 +
              EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl; NaP250: 50 mM NaH2PO4, 150 mM NaCl, 250 mM Imidazol) Bands
 +
              were visualized with SYBR-Safe staining.</i>
 
           </div>
 
           </div>
 
         </div>
 
         </div>
        <div class="thumbcaption" style="text-align: justify;">
+
      </div>
          <i><b>Figure 3: Expression and DNA binding analysis of His<sub>6</sub>-mNeonGreen-Oct1-DBD.</i></b><br>
+
    </section>
          <i><b>Left image:</b>Lane 1: raw lysate of E. coli expression culture after steril-filtration; Lane 2: Flow
+
    <section id="4.2">
            through of first wash
+
      <h2>4.2 <i>In Silico</i> Characterization using DaVinci</h2>
            (10 bed volumes of NaP10 (Na<sub>2</sub>HPO<sub>4</sub>, 150 mM NaCl, 10 mM Imidazol)); Lane 3: Flow through
+
      <p>
            of
+
        We developed the in silico model <a href="https://2024.igem.wiki/heidelberg/model" target="_blank">DaVinci</a>
            second wash (10 bed volumes of NaP20 (Na<sub>2</sub>HPO<sub>4</sub>, 150 mM NaCl, 20 mM Imidazol)); Lane 4:
+
        for rapid engineering
            Elution of purified protein.<br>
+
        and development of our PiCasSO system.
            1 µL of each fraction was loaded after mixing and heating with 4x Laeemli buffer, on a 4-15% TGX-Gel. The
+
        DaVinci acts as a digital twin to PiCasSO, designed to understand the forces acting on our system,
            expected band size of the protein is 56 840.23 Da, highlighted in red on the gel.<br>
+
        refine experimental parameters, and find optimal connections between protein staples and target DNA.
            <b>Right image</b> Purified mNeonGreen-Oct1 fusion-protein (1000 nM, 100 nM or 10 nM) were equilibrated with 0.5 µM DNA,
+
        We calibrated DaVinci with literature and our own experimental affinity data obtained via EMSA assays and
            containing three Oct1 binding sites, in different buffer compositions.
+
        purified
            (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na 2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 mM
+
        proteins. This enabled us to simulate enhancer hijacking in silico, providing valuable input for the design of
             EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl; NaP250: 50 mM NaH2PO4, 150 mM NaCl, 250 mM Imidazol) Bands were visualized with SYBR-Safe staining.</i>
+
        further
 +
        experiments. Additionally, we apply the same approach to our part collection.
 +
        DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged
 +
        dna
 +
        dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the
 +
        dna-binding
 +
        interaction.
 +
      </p>
 +
      <!--Image waiting for tools page upload
 +
      <div class="thumb">
 +
        <div class="thumbinner">
 +
          <img alt=""src=""
 +
          style="width: 100%;" class="thumbimage">
 +
          <div class="thumbcaption">
 +
             <i><b>Figure 4: DaVinci model prediction of the Simple staple constructs</b></i>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
     </div>
+
      -->
 
+
     </section>
 
+
 
   </section>
 
   </section>
 
   <section id="5">
 
   <section id="5">
 
     <h1>5. References</h1>
 
     <h1>5. References</h1>
     <p>Lundbäck, T., Chang, J.-F., Phillips, K., Luisi, B., & Ladbury, J. E. (2000). Characterization of Sequence-Specific DNA Binding by the Transcription Factor Oct-1. <em>Biochemistry, 39</em>(25), 7570–7579. <a href="https://doi.org/10.1021/bi000377h" target="_blank">https://doi.org/10.1021/bi000377h</a></p>
+
     <p>Lundbäck, T., Chang, J.-F., Phillips, K., Luisi, B., &amp; Ladbury, J. E. (2000). Characterization of
 
+
      Sequence-Specific DNA Binding by the Transcription Factor Oct-1. <em>Biochemistry, 39</em>(25), 7570–7579. <a
     <p>Park, J. H., Kwon, H. W., & Jeong, K. J. (2013). Development of a plasmid display system with an Oct-1 DNA-binding domain suitable for in vitro screening of engineered proteins. <em>Journal of Bioscience and Bioengineering, 116</em>(2), 246–252. <a href="https://doi.org/10.1016/j.jbiosc.2013.02.005" target="_blank">https://doi.org/10.1016/j.jbiosc.2013.02.005</a></p>
+
        href="https://doi.org/10.1021/bi000377h" target="_blank">https://doi.org/10.1021/bi000377h</a></p>
   
+
     <p>Park, J. H., Kwon, H. W., &amp; Jeong, K. J. (2013). Development of a plasmid display system with an Oct-1
     <p>Park, Y., Shin, J., Yang, J., Kim, H., Jung, Y., Oh, H., Kim, Y., Hwang, J., Park, M., Ban, C., Jeong, K. J., Kim, S.-K., & Kweon, D.-H. (2020). Plasmid Display for Stabilization of Enzymes Inside the Cell to Improve Whole-Cell Biotransformation Efficiency. <em>Frontiers in Bioengineering and Biotechnology, 7</em>. <a href="https://doi.org/10.3389/fbioe.2019.00444" target="_blank">https://doi.org/10.3389/fbioe.2019.00444</a></p>
+
      DNA-binding domain suitable for in vitro screening of engineered proteins. <em>Journal of Bioscience and
   
+
        Bioengineering, 116</em>(2), 246–252. <a href="https://doi.org/10.1016/j.jbiosc.2013.02.005"
     <p>Stepchenko, A. G., Portseva, T. N., Glukhov, I. A., Kotnova, A. P., Lyanova, B. M., Georgieva, S. G., & Pankratova, E. V. (2021). Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal cells from stress. <em>Scientific Reports, 11</em>(1), 18808. <a href="https://doi.org/10.1038/s41598-021-98323-y" target="_blank">https://doi.org/10.1038/s41598-021-98323-y</a></p>
+
        target="_blank">https://doi.org/10.1016/j.jbiosc.2013.02.005</a></p>
   
+
     <p>Park, Y., Shin, J., Yang, J., Kim, H., Jung, Y., Oh, H., Kim, Y., Hwang, J., Park, M., Ban, C., Jeong, K. J.,
 +
      Kim, S.-K., &amp; Kweon, D.-H. (2020). Plasmid Display for Stabilization of Enzymes Inside the Cell to Improve
 +
      Whole-Cell Biotransformation Efficiency. <em>Frontiers in Bioengineering and Biotechnology, 7</em>. <a
 +
        href="https://doi.org/10.3389/fbioe.2019.00444" target="_blank">https://doi.org/10.3389/fbioe.2019.00444</a></p>
 +
     <p>Stepchenko, A. G., Portseva, T. N., Glukhov, I. A., Kotnova, A. P., Lyanova, B. M., Georgieva, S. G., &amp;
 +
      Pankratova, E. V. (2021). Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal
 +
      cells from stress. <em>Scientific Reports, 11</em>(1), 18808. <a href="https://doi.org/10.1038/s41598-021-98323-y"
 +
        target="_blank">https://doi.org/10.1038/s41598-021-98323-y</a></p>
 
   </section>
 
   </section>
 
</body>
 
</body>
  
 
</html>
 
</html>

Revision as of 21:32, 30 September 2024


BBa_K5237004

Half-Staple: Oct1-DBD

Oct1-DBD is the DNA-binding domain of the human Oct1 transcription factor, it can be readily fused with other DNA-bindig proteins to form a functional staple for DNA-DNA proximity. We used this part as a component for our Simple staple (BBa_K5237006) resulting in a bivalent DNA binding staple, and also fused to mNeonGreen, as part of a FRET readout system (BBa_K5237016).



The PICasSO Toolbox
Figure 1: How our part collection can be used to engineer new staples


Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene regulation, cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the 3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular toolbox based on various DNA-binding proteins to address this issue.

The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation. Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples, ensuring functionality in vitro and in vivo. We took special care to include parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts.

At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding proteins include our finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling and can be further engineered to create alternative, simpler and more compact staples.
(ii) As functional elements, we list additional parts that enhance the functionality of our Cas and Basic staples. These consist of protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling in vivo. Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that support the use of our custom readout systems. These include components of our established FRET-based proximity assay system, enabling users to confirm accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking in mammalian cells.

The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their own custom Cas staples, enabling further optimization and innovation.

Our part collection includes:

DNA-binding proteins: The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring easy assembly.
BBa_K5237000 fgRNA Entry vector MbCas12a-SpCas9 Entryvector for simple fgRNA cloning via SapI
BBa_K5237001 Staple subunit: dMbCas12a-Nucleoplasmin NLS Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple
BBa_K5237002 Staple subunit: SV40 NLS-dSpCas9-SV40 NLS Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple
BBa_K5237003 Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close proximity
BBa_K5237004 Staple subunit: Oct1-DBD Staple subunit that can be combined to form a functional staple, for example with TetR.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237005 Staple subunit: TetR Staple subunit that can be combined to form a functional staple, for example with Oct1.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237006 Simple staple: TetR-Oct1 Functional staple that can be used to bring two DNA strands in close proximity
BBa_K5237007 Staple subunit: GCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237008 Staple subunit: rGCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237009 Mini staple: bGCN4 Assembled staple with minimal size that can be further engineered
Functional elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications
BBa_K5237010 Cathepsin B-cleavable Linker: GFLG Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples
BBa_K5237011 Cathepsin B Expression Cassette Expression Cassette for the overexpression of cathepsin B
BBa_K5237012 Caged NpuN Intein A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation. Can be used to create functionalized staples units
BBa_K5237013 Caged NpuC Intein A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation. Can be used to create functionalized staples units
BBa_K5237014 fgRNA processing casette Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprograming
BBa_K5237015 Intimin anti-EGFR Nanobody Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large constructs
Readout Systems: FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells enabling swift testing and easy development for new systems
BBa_K5237016 FRET-Donor: mNeonGreen-Oct1 FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize DNA-DNA proximity
BBa_K5237017 FRET-Acceptor: TetR-mScarlet-I Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize DNA-DNA proximity
BBa_K5237018 Oct1 Binding Casette DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay
BBa_K5237019 TetR Binding Cassette DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay
BBa_K5237020 Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker
BBa_K5237021 NLS-Gal4-VP64 Trans-activating enhancer, that can be used to simulate enhancer hijacking
BBa_K5237022 mCherry Expression Cassette: UAS, minimal Promotor, mCherry Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker
BBa_K5237023 Oct1 - 5x UAS binding casette Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay
BBa_K5237024 TRE-minimal promoter- firefly luciferase Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for simulated enhancer hijacking

1. Sequence overview

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

2. Usage and Biology

Oct1-DBD is the DNA-binding domain of the human transcription factor Oct1 (POU2F1), which plays a key role in gene regulation, immune response, and stress adaptation in eukaryotic cells. This domain specifically binds to the octamer motif (5'-ATGCAAAT-3') within promoter and enhancer regions, influencing transcriptional activity (Lundbäck et al., 2000). The Oct1-DBD consists of both a POU-specific domain and a POU homeodomain, which work together to form a stable complex with DNA (Park et al., 2013, Stepchenko et al. 2021).

In synthetic biology, Oct1-DBD was previously used for plasmid display technology due to its strong binding affinity (KD = 9 × 10-11 M). Proteins fused with Oct1-DBD showed increased expression and protein solubility (Parker et al. 2020).

This part was further used in BBa_K5237002 as a fusion with tetR, resulting in a bivalent DNA binding staple, and also fused to mNeonGree, as part of a FRET readout system (BBa_K5237016).

3. Assembly and part evolution

The Oct1-DBD amino acid sequence was obtained from UniProt (P14859, POU domain, class 2, transcription factor 1) and DNA binding domain extracted based on information given from Park et al. 2013 & 2020. An E. coli codon optimized DNA sequence was obtained through gene synthesis and used to clone further constructs

4. Results

4.1 Protein expression and EMSA

Oct1 was N-terminally fused to the His6-mNeonGreen. The fusion protein was expressed from a T7 based expression plasmid and subsequently purified using metal affinity chromatography with Ni-NTA beads.(Figure 2, left) DNA binding affinity was estimated with an electrophoretic mobility shift assay (EMSA). For this, three different buffer conditions were tested (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 mM EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl; NaP250: Na2HPO4, 150 mM NaCl, 250 mM Imidazol). DNA binding could only be detected for Binding buffer 1. (Figure 2, right)

Figure 2: Expression and DNA binding analysis of His6-mNeonGreen-Oct1-DBD.
Left image:Lane 1: raw lysate of E. coli expression culture after steril-filtration; Lane 2: Flow through of first wash (10 bed volumes of NaP10 (Na2HPO4, 150 mM NaCl, 10 mM Imidazol)); Lane 3: Flow through of second wash (10 bed volumes of NaP20 (Na2HPO4, 150 mM NaCl, 20 mM Imidazol)); Lane 4: Elution of purified protein.
1 µL of each fraction was loaded after mixing and heating with 4x Laeemli buffer, on a 4-15% TGX-Gel. The expected band size of the protein is 56 840.23 Da, highlighted in red on the gel.
Right image Purified mNeonGreen-Oct1 fusion-protein (1000 nM, 100 nM or 10 nM) were equilibrated with 0.5 µM DNA, containing three Oct1 binding sites, in different buffer compositions. (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na 2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 mM EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl; NaP250: 50 mM NaH2PO4, 150 mM NaCl, 250 mM Imidazol) Bands were visualized with SYBR-Safe staining.

4.2 In Silico Characterization using DaVinci

We developed the in silico model DaVinci for rapid engineering and development of our PiCasSO system. DaVinci acts as a digital twin to PiCasSO, designed to understand the forces acting on our system, refine experimental parameters, and find optimal connections between protein staples and target DNA. We calibrated DaVinci with literature and our own experimental affinity data obtained via EMSA assays and purified proteins. This enabled us to simulate enhancer hijacking in silico, providing valuable input for the design of further experiments. Additionally, we apply the same approach to our part collection. DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged dna dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the dna-binding interaction.

5. References

Lundbäck, T., Chang, J.-F., Phillips, K., Luisi, B., & Ladbury, J. E. (2000). Characterization of Sequence-Specific DNA Binding by the Transcription Factor Oct-1. Biochemistry, 39(25), 7570–7579. https://doi.org/10.1021/bi000377h

Park, J. H., Kwon, H. W., & Jeong, K. J. (2013). Development of a plasmid display system with an Oct-1 DNA-binding domain suitable for in vitro screening of engineered proteins. Journal of Bioscience and Bioengineering, 116(2), 246–252. https://doi.org/10.1016/j.jbiosc.2013.02.005

Park, Y., Shin, J., Yang, J., Kim, H., Jung, Y., Oh, H., Kim, Y., Hwang, J., Park, M., Ban, C., Jeong, K. J., Kim, S.-K., & Kweon, D.-H. (2020). Plasmid Display for Stabilization of Enzymes Inside the Cell to Improve Whole-Cell Biotransformation Efficiency. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00444

Stepchenko, A. G., Portseva, T. N., Glukhov, I. A., Kotnova, A. P., Lyanova, B. M., Georgieva, S. G., & Pankratova, E. V. (2021). Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal cells from stress. Scientific Reports, 11(1), 18808. https://doi.org/10.1038/s41598-021-98323-y