Difference between revisions of "Part:BBa K5398600"
Jinmengliu (Talk | contribs) |
Jinmengliu (Talk | contribs) |
||
Line 2: | Line 2: | ||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K5398600 short</partinfo> | <partinfo>BBa_K5398600 short</partinfo> | ||
+ | __TOC__ | ||
===Introduction=== | ===Introduction=== | ||
Tyrosinase is a copper-containing oxidoreductase that possesses two catalytic activities, and is involved in the first few steps of melanin synthesis from l-tyrosine. As shown in Fig. 1, tyrosinase catalyzes the ortho-hydroxylation of l-tyrosine to l-DOPA via its monophenolase (MP) activity, and consecutively oxidizes l-DOPA to l-dopaquinone via the diphenolase (DP) activity, thereby consuming oxygen. l-dopaquinone is not stable and will be further non-enzymatically oxidized to l-dopachrome (a red-colored product) in the presence of O<sub>2</sub>.TyrVs refers to a tyrosinase enzyme derived from <em>Verrucomicrobium spinosum</em>, which plays a critical role in the hydroxylation of tyrosine residues into L-Dopa. This enzyme has shown efficient activity, particularly in the context of biological adhesion, as demonstrated in studies co-expressing mussel foot protein 3 with TyrVs. | Tyrosinase is a copper-containing oxidoreductase that possesses two catalytic activities, and is involved in the first few steps of melanin synthesis from l-tyrosine. As shown in Fig. 1, tyrosinase catalyzes the ortho-hydroxylation of l-tyrosine to l-DOPA via its monophenolase (MP) activity, and consecutively oxidizes l-DOPA to l-dopaquinone via the diphenolase (DP) activity, thereby consuming oxygen. l-dopaquinone is not stable and will be further non-enzymatically oxidized to l-dopachrome (a red-colored product) in the presence of O<sub>2</sub>.TyrVs refers to a tyrosinase enzyme derived from <em>Verrucomicrobium spinosum</em>, which plays a critical role in the hydroxylation of tyrosine residues into L-Dopa. This enzyme has shown efficient activity, particularly in the context of biological adhesion, as demonstrated in studies co-expressing mussel foot protein 3 with TyrVs. | ||
Line 21: | Line 22: | ||
<body> | <body> | ||
<div class="module"> | <div class="module"> | ||
− | <img src="https://static.igem.wiki/teams/5398/ | + | <img src="https://static.igem.wiki/teams/5398/tyrvs/tyrvs-new/fanyingtu.webp" width="400" height="auto" alt="Protein purification"> |
<p><b>Fig. 1 | Synthesis scheme of L-DOPA and further oxidized product L-dopachrome.</b></p> | <p><b>Fig. 1 | Synthesis scheme of L-DOPA and further oxidized product L-dopachrome.</b></p> | ||
</div> | </div> | ||
Line 48: | Line 49: | ||
<div class="module"> | <div class="module"> | ||
<img src="https://static.igem.wiki/teams/5398/tyrvs/tyrvs-new/tyrvs-pre-expression.webp" width="400" height="auto" alt="Protein purification"> | <img src="https://static.igem.wiki/teams/5398/tyrvs/tyrvs-new/tyrvs-pre-expression.webp" width="400" height="auto" alt="Protein purification"> | ||
− | <p><b>Fig. | + | <p><b>Fig. 2 | Expression of recombinant TyrVs in <i>E. coli</i>BL21 (DE3) with pET-PC-SUMO-TyrVs.</b></p> |
<p>Lane 1: Marker. lanes 2 to 4: whole-cell lysate, supernatant and pellet from induced cells with 0.5 mM IPTG respectively;lanes 5 to 7: whole-cell lysate, supernatant and pellet from induced cells respectively.</p> | <p>Lane 1: Marker. lanes 2 to 4: whole-cell lysate, supernatant and pellet from induced cells with 0.5 mM IPTG respectively;lanes 5 to 7: whole-cell lysate, supernatant and pellet from induced cells respectively.</p> | ||
</div> | </div> | ||
Line 72: | Line 73: | ||
<div class="module"> | <div class="module"> | ||
<img src="https://static.igem.wiki/teams/5398/tyrvs/tyrvs-new/mizuo-tyrvs.webp" width="400" height="auto" alt="Protein purification"> | <img src="https://static.igem.wiki/teams/5398/tyrvs/tyrvs-new/mizuo-tyrvs.webp" width="400" height="auto" alt="Protein purification"> | ||
− | <p><b>Fig. | + | <p><b>Fig. 3 | SDS-PAGE analysis of protein fractions eluted from the Ni-NTA column.</b></p> |
<p>Lane 1: Marker. Lane 2: Lysis Buffer. Lane 3: Supernatant. Lane 4: 20 mM Imidazole. Lane 5: 50 mM Imidazole. Lane 6: 150 mM Imidazole. </p> | <p>Lane 1: Marker. Lane 2: Lysis Buffer. Lane 3: Supernatant. Lane 4: 20 mM Imidazole. Lane 5: 50 mM Imidazole. Lane 6: 150 mM Imidazole. </p> | ||
</div> | </div> | ||
Line 96: | Line 97: | ||
<div class="module"> | <div class="module"> | ||
<img src="https://static.igem.wiki/teams/5398/tyrvs/tyrvs-new/new-abcd.webp" width="400" height="auto" alt="Protein purification"> | <img src="https://static.igem.wiki/teams/5398/tyrvs/tyrvs-new/new-abcd.webp" width="400" height="auto" alt="Protein purification"> | ||
− | <p><b>Fig. | + | <p><b>Fig. 4 | The activity assay results of tyrosinase TyrVs</b></p> |
<p>a-b.Michaelis-Menten plot and Lineweaver-Burk double reciprocal plot of enzymatic reaction from tyrosine to dopaquinone experiments. c-d.Michaelis-Menten plot and Lineweaver-Burk double reciprocal plot of enzymatic reaction from L-DOPA to dopaquinone experiments. </p> | <p>a-b.Michaelis-Menten plot and Lineweaver-Burk double reciprocal plot of enzymatic reaction from tyrosine to dopaquinone experiments. c-d.Michaelis-Menten plot and Lineweaver-Burk double reciprocal plot of enzymatic reaction from L-DOPA to dopaquinone experiments. </p> | ||
</div> | </div> |
Revision as of 11:43, 29 September 2024
A tyrosinase enzyme TyrVs
Introduction
Tyrosinase is a copper-containing oxidoreductase that possesses two catalytic activities, and is involved in the first few steps of melanin synthesis from l-tyrosine. As shown in Fig. 1, tyrosinase catalyzes the ortho-hydroxylation of l-tyrosine to l-DOPA via its monophenolase (MP) activity, and consecutively oxidizes l-DOPA to l-dopaquinone via the diphenolase (DP) activity, thereby consuming oxygen. l-dopaquinone is not stable and will be further non-enzymatically oxidized to l-dopachrome (a red-colored product) in the presence of O2.TyrVs refers to a tyrosinase enzyme derived from Verrucomicrobium spinosum, which plays a critical role in the hydroxylation of tyrosine residues into L-Dopa. This enzyme has shown efficient activity, particularly in the context of biological adhesion, as demonstrated in studies co-expressing mussel foot protein 3 with TyrVs.
Fig. 1 | Synthesis scheme of L-DOPA and further oxidized product L-dopachrome.
Usage and Biology
In our project, TyrVs can catalyze the tyrosine residues in the TRn4-mfp5 protein, converting them into L-DOPA, thereby enhancing its adhesive properties. L-DOPA exhibits excellent adhesion, particularly in moist environments. This transformation process is similar to the mechanism used by marine organisms like mussels, which enhance their adhesion through L-DOPA.
Characterization
To validate the functionality of the tyrosinase TyrVs, we designed bacteria expressing TyrVs.We constructed the pET-SUMO-TyrVs vector, after culturing at 16°C for 20 hours, extracted the proteins for SDS-PAGE and Coomassie Brilliant Blue staining analysis.
Fig. 2 | Expression of recombinant TyrVs in E. coliBL21 (DE3) with pET-PC-SUMO-TyrVs.
Lane 1: Marker. lanes 2 to 4: whole-cell lysate, supernatant and pellet from induced cells with 0.5 mM IPTG respectively;lanes 5 to 7: whole-cell lysate, supernatant and pellet from induced cells respectively.
Fig. 3 | SDS-PAGE analysis of protein fractions eluted from the Ni-NTA column.
Lane 1: Marker. Lane 2: Lysis Buffer. Lane 3: Supernatant. Lane 4: 20 mM Imidazole. Lane 5: 50 mM Imidazole. Lane 6: 150 mM Imidazole.
Fig. 4 | The activity assay results of tyrosinase TyrVs
a-b.Michaelis-Menten plot and Lineweaver-Burk double reciprocal plot of enzymatic reaction from tyrosine to dopaquinone experiments. c-d.Michaelis-Menten plot and Lineweaver-Burk double reciprocal plot of enzymatic reaction from L-DOPA to dopaquinone experiments.
Reference
#TAN D, ZHAO J P, RAN G Q, et al. Highly efficient biocatalytic synthesis of L-DOPA using in situ immobilized Verrucomicrobium spinosum tyrosinase on polyhydroxyalkanoate nano-granules [J]. Appl. Microbiol. Biotechnol., 2019, 103(14): 5663-78.
#YAO L, WANG X, XUE R, et al. Comparative analysis of mussel foot protein 3B co-expressed with tyrosinases provides a potential adhesive biomaterial [J]. Int. J. Biol. Macromol., 2022, 195: 229-36.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BamHI site found at 309
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]