Difference between revisions of "Part:BBa K5246022"

Line 7: Line 7:
  
 
===Usage and Biology===
 
===Usage and Biology===
 
 
Gene HfsJ from Hirschia baltica encodes a protein of 260 amino acids. HfsJ is one of the glycosyltransferases involved in the holdfast synthesis pathway and is structurally very similar to glycosyltransferases that transfer UDP-N-acetyl-D-mannosaminuronic acid. Ir belongs to the WecB/TagA/CpsF family of glycosyltransferases that catalyze the formation of glycosidic bonds and may be involved in the biosynthesis of repeating polysaccharide units found in membrane glycolipids.
 
Gene HfsJ from Hirschia baltica encodes a protein of 260 amino acids. HfsJ is one of the glycosyltransferases involved in the holdfast synthesis pathway and is structurally very similar to glycosyltransferases that transfer UDP-N-acetyl-D-mannosaminuronic acid. Ir belongs to the WecB/TagA/CpsF family of glycosyltransferases that catalyze the formation of glycosidic bonds and may be involved in the biosynthesis of repeating polysaccharide units found in membrane glycolipids.
 
It is predicted that this is an intracellular protein.
 
It is predicted that this is an intracellular protein.
 +
 +
<html>
 +
<body>
 +
<p>
 +
This part also has a non his-tagged variant <a href="https://parts.igem.org/Part:BBa_K5246007">BBa_K5246007</a>.
 +
</p>
 +
</html>
  
 
===Sequence and Features===
 
===Sequence and Features===

Revision as of 14:44, 28 September 2024


HB HfsJ Glycosyltransferase

Introduction

Usage and Biology

Gene HfsJ from Hirschia baltica encodes a protein of 260 amino acids. HfsJ is one of the glycosyltransferases involved in the holdfast synthesis pathway and is structurally very similar to glycosyltransferases that transfer UDP-N-acetyl-D-mannosaminuronic acid. Ir belongs to the WecB/TagA/CpsF family of glycosyltransferases that catalyze the formation of glycosidic bonds and may be involved in the biosynthesis of repeating polysaccharide units found in membrane glycolipids. It is predicted that this is an intracellular protein.

This part also has a non his-tagged variant BBa_K5246007.

Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal PstI site found at 188
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal PstI site found at 188
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 622
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal PstI site found at 188
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal PstI site found at 188
  • 1000
    COMPATIBLE WITH RFC[1000]


Experimental characterization

Bioinformatic analysis

CDD analysis revealed that HfsJ is part of the WecB/TgA/CpsF glycosyltransferase family. This family catalyzes the formation of glycosidic bonds and may be involved in the biosynthesis of repeating polysaccharide units found in membrane glycolipids. It has domains very similar to E. coli WecG glycosyltransferase, which is responsible for UDP-N-acetyl-D-mannosaminuronic acid transfer. Results are supported by the protein BLAST, which showed significant similarities with the same WecG glycosyltransferase from E. coli.

DeepTMHMM analysis predicted that HfsJ is a globular protein located on the cytoplasmic side of the membrane.

AlphaFold 3 structure, with a high confidence score, shows that HfsJ is most likely a globular protein mostly made of alpha helices. A pTM score above 0.5 suggests that the predicted overall structure may closely resemble the true protein fold, while ipTM indicates the accuracy of the subunit positioning within the complex. Values higher than 0.8 represent confident, high-quality predictions.

Based on our findings and prior research, we propose that HfsJ is likely a globular protein responsible for transferring UDP-N-acetyl-D-mannosaminuronic acid and catalyzing the formation of a glycosidic bond. [1][2]

References

1. Toh, E., Kurtz, Harry D. and Brun, Y.V. (2008) ‘Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps’, Journal of Bacteriology, 190(21), pp. 7219–7231. doi:10.1128/jb.01003-08.
2. Chepkwony, N.K., Berne, C. and Brun, Y.V. (2019b) ‘Comparative analysis of ionic strength tolerance between freshwater and marine Caulobacterales adhesins’, Journal of Bacteriology, 201(18). doi:10.1128/jb.00061-19.