Difference between revisions of "Part:BBa K5317016"
(→Theoretical Part Design) |
(→Usage and Biology) |
||
Line 5: | Line 5: | ||
===Usage and Biology=== | ===Usage and Biology=== | ||
− | ATF2 belongs to the ATF/CREB family and regulates genes involved in cell growth, stress responses and apoptosis. | + | ATF2 belongs to the ATF/CREB family and regulates genes involved in cell growth, stress responses and apoptosis. The ATF-2 protein is DNA-binding that binds to cyclic AMP-response elements (CREs), thereby forming a homodimer or heterodimer with c-Jun. It then stimulates CRE-dependent transcription (Kawasaki ''et al. '', 2000) |
− | We employed ATF2 as a transcription factor in our cell-based beta-lactam-sensor, which in contrast to CcpA (<span class="plainlinks">[https://parts.igem.org/Part:BBa_K5317014 K5317014]</span>) or GraR (<span class="plainlinks">[https://parts.igem.org/Part:BBa_K5317015 K5317015]</span>) originates from an eukaryotic background, to transfer the PknB-detected signal into reporter gene expression. | + | We employed ATF2 as a transcription factor in our cell-based beta-lactam-sensor, which in contrast to CcpA (<span class="plainlinks">[https://parts.igem.org/Part:BBa_K5317014 K5317014]</span>) or GraR (<span class="plainlinks">[https://parts.igem.org/Part:BBa_K5317015 K5317015]</span>) originates from an eukaryotic background, to transfer the PknB-detected signal into reporter gene expression. |
=Cloning= | =Cloning= |
Revision as of 19:32, 26 September 2024
ATF2
Usage and Biology
ATF2 belongs to the ATF/CREB family and regulates genes involved in cell growth, stress responses and apoptosis. The ATF-2 protein is DNA-binding that binds to cyclic AMP-response elements (CREs), thereby forming a homodimer or heterodimer with c-Jun. It then stimulates CRE-dependent transcription (Kawasaki et al. , 2000)
We employed ATF2 as a transcription factor in our cell-based beta-lactam-sensor, which in contrast to CcpA (K5317014) or GraR (K5317015) originates from an eukaryotic background, to transfer the PknB-detected signal into reporter gene expression.
Cloning
Theoretical Part Design
The ATF2 gene was synthesized, and the gene sequence was explicity chose from its cDNA to exclude intons and shorten the gene sequence inserted into the final plasmid for characterization (K5317021).
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal EcoRI site found at 21
Illegal EcoRI site found at 283
Illegal XbaI site found at 324
Illegal PstI site found at 731
Illegal PstI site found at 1180 - 12INCOMPATIBLE WITH RFC[12]Illegal EcoRI site found at 21
Illegal EcoRI site found at 283
Illegal PstI site found at 731
Illegal PstI site found at 1180 - 21INCOMPATIBLE WITH RFC[21]Illegal EcoRI site found at 21
Illegal EcoRI site found at 283 - 23INCOMPATIBLE WITH RFC[23]Illegal EcoRI site found at 21
Illegal EcoRI site found at 283
Illegal XbaI site found at 324
Illegal PstI site found at 731
Illegal PstI site found at 1180 - 25INCOMPATIBLE WITH RFC[25]Illegal EcoRI site found at 21
Illegal EcoRI site found at 283
Illegal XbaI site found at 324
Illegal PstI site found at 731
Illegal PstI site found at 1180 - 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 1031
Characterization
The functionality of ATF2 in our cell-based sensor was assessed by analysing its general expression after transfection in HEK293T cells and assessing its localization by fusion with the reporter gene mRuby2 (K5317001). For results please visit the registry entry K5317021.
References
Kirsch, K., Zeke, A., Tőke, O., Sok, P., Sethi, A., Sebő, A., Kumar, G. S., Egri, P., Póti, Á. L., Gooley, P., Peti, W., Bento, I., Alexa, A., & Reményi, A. (2020). Co-regulation of the transcription controlling ATF2 phosphoswitch by JNK and p38. Nature Communications, 11(1), 5769. https://doi.org/10.1038/s41467-020-19582-3