Difference between revisions of "Part:BBa K5317016"

Line 5: Line 5:
 
===Usage and Biology===
 
===Usage and Biology===
  
ATF2 belongs to the ATF/CREB family and regulates genes involved in cell growth, stress responses and apoptosis. With the addition of the ATF2 gene, this plasmid enables the study of transcriptional regulation of ATF2 (Kirsch ''et al.'', 2020) and its phosphorylation by PknB, making it important for research into signaling pathways related to cell stress and survival. It could play also a role in modulating bacterial virulence by altering key regulatory proteins, affecting their role in infection or antibiotic resistance (Zhang'' et al.'', 2020).
+
ATF2 belongs to the ATF/CREB family and regulates genes involved in cell growth, stress responses and apoptosis. With the addition of the ATF2 gene, this plasmid enables the study of transcriptional regulation of ATF2 (Kirsch ''et al.'', 2020) and its phosphorylation by PknB, making it important for research into signaling pathways related to cell stress and survival.  
 +
 
 +
We employed ATF2 as a transcription factor in our cell-based beta-lactam-sensor, which in contrast to CcpA (<span class="plainlinks">[https://parts.igem.org/Part:BBa_K5317014 K5317014]</span>) or GraR (<span class="plainlinks">[https://parts.igem.org/Part:BBa_K5317015 K5317015]</span>) originates from an eukaryotic background, to transfer the PknB-detected signal into reporter gene expression.  
  
 
=Cloning=
 
=Cloning=
Line 12: Line 14:
 
===Theoretical Part Design===
 
===Theoretical Part Design===
  
 +
The ATF2 gene was synthesized, and the gene sequence was explicity chose from its cDNA to exclude intons and shorten the gene sequence inserted into the final plasmid for characterization (<span class="plainlinks">[https://parts.igem.org/Part:BBa_K5317021 K5317021]</span>).
  
 
===Sequence and Features===
 
===Sequence and Features===
Line 22: Line 25:
 
Kirsch, K., Zeke, A., Tőke, O., Sok, P., Sethi, A., Sebő, A., Kumar, G. S., Egri, P., Póti, Á. L., Gooley, P., Peti, W., Bento, I., Alexa, A., & Reményi, A. (2020). Co-regulation of the transcription controlling ATF2 phosphoswitch by JNK and p38. ''Nature Communications'', 11(1), 5769. https://doi.org/10.1038/s41467-020-19582-3
 
Kirsch, K., Zeke, A., Tőke, O., Sok, P., Sethi, A., Sebő, A., Kumar, G. S., Egri, P., Póti, Á. L., Gooley, P., Peti, W., Bento, I., Alexa, A., & Reményi, A. (2020). Co-regulation of the transcription controlling ATF2 phosphoswitch by JNK and p38. ''Nature Communications'', 11(1), 5769. https://doi.org/10.1038/s41467-020-19582-3
  
 
Zhang, C., Zhang, R., Dai, X., Cao, X., Wang, K., Huang, X., & Ren, Q. (2020). Activating transcription factor 2 (ATF2) negatively regulates the expression of antimicrobial peptide genes through tumor necrosis factor (TNF) in Macrobrachium nipponense. ''Fish & Shellfish Immunology'', 107, 26–35. https://doi.org/10.1016/j.fsi.2020.09.043
 
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  

Revision as of 14:43, 26 September 2024


ATF2

Usage and Biology

ATF2 belongs to the ATF/CREB family and regulates genes involved in cell growth, stress responses and apoptosis. With the addition of the ATF2 gene, this plasmid enables the study of transcriptional regulation of ATF2 (Kirsch et al., 2020) and its phosphorylation by PknB, making it important for research into signaling pathways related to cell stress and survival.

We employed ATF2 as a transcription factor in our cell-based beta-lactam-sensor, which in contrast to CcpA (K5317014) or GraR (K5317015) originates from an eukaryotic background, to transfer the PknB-detected signal into reporter gene expression.

Cloning

Theoretical Part Design

The ATF2 gene was synthesized, and the gene sequence was explicity chose from its cDNA to exclude intons and shorten the gene sequence inserted into the final plasmid for characterization (K5317021).

Sequence and Features

Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal EcoRI site found at 21
    Illegal EcoRI site found at 283
    Illegal XbaI site found at 324
    Illegal PstI site found at 731
    Illegal PstI site found at 1180
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal EcoRI site found at 21
    Illegal EcoRI site found at 283
    Illegal PstI site found at 731
    Illegal PstI site found at 1180
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal EcoRI site found at 21
    Illegal EcoRI site found at 283
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal EcoRI site found at 21
    Illegal EcoRI site found at 283
    Illegal XbaI site found at 324
    Illegal PstI site found at 731
    Illegal PstI site found at 1180
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal EcoRI site found at 21
    Illegal EcoRI site found at 283
    Illegal XbaI site found at 324
    Illegal PstI site found at 731
    Illegal PstI site found at 1180
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 1031

References

Kirsch, K., Zeke, A., Tőke, O., Sok, P., Sethi, A., Sebő, A., Kumar, G. S., Egri, P., Póti, Á. L., Gooley, P., Peti, W., Bento, I., Alexa, A., & Reményi, A. (2020). Co-regulation of the transcription controlling ATF2 phosphoswitch by JNK and p38. Nature Communications, 11(1), 5769. https://doi.org/10.1038/s41467-020-19582-3