Difference between revisions of "Part:BBa K5205011"

 
 
Line 5: Line 5:
 
ureD encodes for a nickel-binding protein involved in the assembly of the urease metallocentre in S. pasteurii DSM33 (Ciurli et al., 2002). The urease is crucial for catalyzing the hydrolysis of urea into ammonia and carbon dioxide, a key step in the process of microbially induced calcite precipitation (MICP).  
 
ureD encodes for a nickel-binding protein involved in the assembly of the urease metallocentre in S. pasteurii DSM33 (Ciurli et al., 2002). The urease is crucial for catalyzing the hydrolysis of urea into ammonia and carbon dioxide, a key step in the process of microbially induced calcite precipitation (MICP).  
  
<!-- Add more about the biology of this part here
+
<html>
===Usage and Biology===
+
<body>
 +
<figure>
 +
<div class = "center">
 +
<center><img src = "https://static.igem.wiki/teams/5205/parts/05-1.png" style = "width:600px"></center>
 +
</div>
 +
<figcaption><center>Figure 1. A. Schematic of urease and microbially induced calcite precipitation (MICP) in S. pasteurii (Wu et al., 2021); B. UreD in the urease gene cluster of S. pasteurii DSM33 (Pei et al., 2023).  </center></figcaption>
 +
</figure>
 +
</body>
 +
</html>
  
 
<!-- -->
 
<!-- -->
<span class='h3bb'>Sequence and Features</span>
+
<span class='h3bb'></span>
 +
===Sequence and Features===
 
<partinfo>BBa_K5205011 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K5205011 SequenceAndFeatures</partinfo>
  
Line 17: Line 26:
 
<partinfo>BBa_K5205011 parameters</partinfo>
 
<partinfo>BBa_K5205011 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
<!-- Add more about the biology of this part here-->
 +
===Usage and Biology===
 +
Microbiologically Induced Calcite Precipitation (MICP) involves hydrolyzing urea into ammonia and carbonate ions, raising pH to form calcium carbonate precipitates (Sarayu et al., 2014). This process can also precipitate heavy metals like cadmium and remove them from the water (Qasem et al., 2021). By introducing urease-related genes (ureD) from S. pasteurii into E. coli, E. coli can be engineered to be a heavy metal remover.
 +
 +
===References===
 +
 +
Ciurli, S., Safarov, N., Miletti, S., Dikiy, A., Christensen, S. K., Kornetzky, K., Bryant, D. A., Vandenberghe, I., Devreese, B., Samyn, B., Remaut, H., & van Beeumen, J. (2002). Molecular characterization of Bacillus pasteurii UreE, a metal-binding chaperone for the assembly of the urease active site. J Biol Inorg Chem, 7(6), 623-631. https://doi.org/10.1007/s00775-002-0341-7
 +
 +
Pei, D., Liu, Z., & Hu, B. (2023). A novel urease gene structure of Sporosarcina pasteurii with double operons.
 +
 +
Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545-021-00127-0
 +
 +
Sarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials--a review. Appl Biochem Biotechnol, 172(5), 2308-2323. https://doi.org/10.1007/s12010-013-0686-0
 +
 +
Wu, Y., Li, H., & Li, Y. (2021). Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, Applications and Challenges. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112396

Latest revision as of 03:39, 24 September 2024


ureD, nickel-binding protein from Sporosarcina pasteurii DSM33

ureD encodes for a nickel-binding protein involved in the assembly of the urease metallocentre in S. pasteurii DSM33 (Ciurli et al., 2002). The urease is crucial for catalyzing the hydrolysis of urea into ammonia and carbon dioxide, a key step in the process of microbially induced calcite precipitation (MICP).

Figure 1. A. Schematic of urease and microbially induced calcite precipitation (MICP) in S. pasteurii (Wu et al., 2021); B. UreD in the urease gene cluster of S. pasteurii DSM33 (Pei et al., 2023).

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 121
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 622
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 206


Usage and Biology

Microbiologically Induced Calcite Precipitation (MICP) involves hydrolyzing urea into ammonia and carbonate ions, raising pH to form calcium carbonate precipitates (Sarayu et al., 2014). This process can also precipitate heavy metals like cadmium and remove them from the water (Qasem et al., 2021). By introducing urease-related genes (ureD) from S. pasteurii into E. coli, E. coli can be engineered to be a heavy metal remover.

References

Ciurli, S., Safarov, N., Miletti, S., Dikiy, A., Christensen, S. K., Kornetzky, K., Bryant, D. A., Vandenberghe, I., Devreese, B., Samyn, B., Remaut, H., & van Beeumen, J. (2002). Molecular characterization of Bacillus pasteurii UreE, a metal-binding chaperone for the assembly of the urease active site. J Biol Inorg Chem, 7(6), 623-631. https://doi.org/10.1007/s00775-002-0341-7

Pei, D., Liu, Z., & Hu, B. (2023). A novel urease gene structure of Sporosarcina pasteurii with double operons.

Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545-021-00127-0

Sarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials--a review. Appl Biochem Biotechnol, 172(5), 2308-2323. https://doi.org/10.1007/s12010-013-0686-0

Wu, Y., Li, H., & Li, Y. (2021). Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, Applications and Challenges. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112396