Difference between revisions of "Part:BBa K5205010"

 
 
Line 5: Line 5:
 
ureG encodes for a GTPase that hydrolyzes GTP to provide the energy necessary for nickel incorporation into the urease metallocentre in Sporosarcina pasteurii DSM33 (Zambelli et al., 2005). The urease is crucial for catalyzing the hydrolysis of urea into ammonia and carbon dioxide, a key step in the process of microbially induced calcite precipitation (MICP).  
 
ureG encodes for a GTPase that hydrolyzes GTP to provide the energy necessary for nickel incorporation into the urease metallocentre in Sporosarcina pasteurii DSM33 (Zambelli et al., 2005). The urease is crucial for catalyzing the hydrolysis of urea into ammonia and carbon dioxide, a key step in the process of microbially induced calcite precipitation (MICP).  
  
<!-- Add more about the biology of this part here
+
<html>
===Usage and Biology===
+
<body>
 +
<figure>
 +
<div class = "center">
 +
<center><img src = "https://static.igem.wiki/teams/5205/parts/05-1.png" style = "width:600px"></center>
 +
</div>
 +
<figcaption><center>Figure 1. A. Schematic of urease and microbially induced calcite precipitation (MICP) in S. pasteurii (Wu et al., 2021); B. UreG in the urease gene cluster of S. pasteurii DSM33 (Pei et al., 2023).  </center></figcaption>
 +
</figure>
 +
</body>
 +
</html>
  
 
<!-- -->
 
<!-- -->
<span class='h3bb'>Sequence and Features</span>
+
<span class='h3bb'></span>
 +
===Sequence and Features===
 
<partinfo>BBa_K5205010 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K5205010 SequenceAndFeatures</partinfo>
  
Line 17: Line 26:
 
<partinfo>BBa_K5205010 parameters</partinfo>
 
<partinfo>BBa_K5205010 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
<!-- Add more about the biology of this part here-->
 +
===Usage and Biology===
 +
 +
Microbiologically Induced Calcite Precipitation (MICP) involves hydrolyzing urea into ammonia and carbonate ions, raising pH to form calcium carbonate precipitates (Sarayu et al., 2014). This process can also precipitate heavy metals like cadmium and remove them from the water (Qasem et al., 2021). By introducing urease-related genes (ureG) from S. pasteurii into E. coli, E. coli can be engineered to be a heavy metal remover.
 +
 +
===References===
 +
 +
Pei, D., Liu, Z., & Hu, B. (2023). A novel urease gene structure of Sporosarcina pasteurii with double operons.
 +
 +
Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545-021-00127-0
 +
 +
Sarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials--a review. Appl Biochem Biotechnol, 172(5), 2308-2323. https://doi.org/10.1007/s12010-013-0686-0
 +
 +
Wu, Y., Li, H., & Li, Y. (2021). Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, Applications and Challenges. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112396
 +
 +
Zambelli, B., Stola, M., Musiani, F., De Vriendt, K., Samyn, B., Devreese, B., Van Beeumen, J., Turano, P., Dikiy, A., Bryant, D. A., & Ciurli, S. (2005). UreG, a chaperone in the urease assembly process, is an intrinsically unstructured GTPase that specifically binds Zn2+. J Biol Chem, 280(6), 4684-4695. https://doi.org/10.1074/jbc.M408483200

Latest revision as of 03:35, 24 September 2024


ureG, GTPase from Sporosarcina pasteurii DSM33

ureG encodes for a GTPase that hydrolyzes GTP to provide the energy necessary for nickel incorporation into the urease metallocentre in Sporosarcina pasteurii DSM33 (Zambelli et al., 2005). The urease is crucial for catalyzing the hydrolysis of urea into ammonia and carbon dioxide, a key step in the process of microbially induced calcite precipitation (MICP).

Figure 1. A. Schematic of urease and microbially induced calcite precipitation (MICP) in S. pasteurii (Wu et al., 2021); B. UreG in the urease gene cluster of S. pasteurii DSM33 (Pei et al., 2023).

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 295
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 553


Usage and Biology

Microbiologically Induced Calcite Precipitation (MICP) involves hydrolyzing urea into ammonia and carbonate ions, raising pH to form calcium carbonate precipitates (Sarayu et al., 2014). This process can also precipitate heavy metals like cadmium and remove them from the water (Qasem et al., 2021). By introducing urease-related genes (ureG) from S. pasteurii into E. coli, E. coli can be engineered to be a heavy metal remover.

References

Pei, D., Liu, Z., & Hu, B. (2023). A novel urease gene structure of Sporosarcina pasteurii with double operons.

Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545-021-00127-0

Sarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials--a review. Appl Biochem Biotechnol, 172(5), 2308-2323. https://doi.org/10.1007/s12010-013-0686-0

Wu, Y., Li, H., & Li, Y. (2021). Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, Applications and Challenges. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112396

Zambelli, B., Stola, M., Musiani, F., De Vriendt, K., Samyn, B., Devreese, B., Van Beeumen, J., Turano, P., Dikiy, A., Bryant, D. A., & Ciurli, S. (2005). UreG, a chaperone in the urease assembly process, is an intrinsically unstructured GTPase that specifically binds Zn2+. J Biol Chem, 280(6), 4684-4695. https://doi.org/10.1074/jbc.M408483200