Difference between revisions of "Part:BBa K5115020"

Line 6: Line 6:
 
__TOC__
 
__TOC__
 
===Introduction===
 
===Introduction===
The Ni-Fe hydrogenase we use is an enzyme that functions in vivo bidirectionally for NAD<sup>+</sup> reduction and NADH oxidation coupled to H<sub>2</sub> uptake and H<sub>2</sub> production, respectively. <ref>Teramoto, H., Shimizu, T., Suda, M., & Inui, M. (2022). Hydrogen production based on the heterologous expression of NAD+-reducing [NiFe]-hydrogenase from Cupriavidus necator in different genetic backgrounds of Escherichia coli strains. International Journal of Hydrogen Energy, 47(52), 22010–22021. https://doi.org/10.1016/j.ijhydene.2022.05.018</ref> In our design, the Ni-Fe hydrogenase works mainly to restore the nickel to a zero valence, which can help reduce nickel toxicity and collect nickel particles.
+
The Ni-Fe hydrogenase we use is an enzyme that functions in vivo bidirectionally for NAD<sup>+</sup> reduction and NADH oxidation coupled to H<sub>2</sub> uptake and H<sub>2</sub> production, respectively. <ref>Teramoto, H., Shimizu, T., Suda, M., & Inui, M. (2022). Hydrogen production based on the heterologous expression of NAD+-reducing [NiFe]-hydrogenase from Cupriavidus necator in different genetic backgrounds of Escherichia coli strains. International Journal of Hydrogen Energy, 47(52), 22010–22021. </ref> In our design, the Ni-Fe hydrogenase works mainly to restore the nickel to a zero valence, which can help reduce nickel toxicity and collect nickel particles.
  
 
===Usage and Biology===
 
===Usage and Biology===

Revision as of 03:47, 22 September 2024


hox and hyp operon

contributed by Fudan iGEM 2023

Introduction

The Ni-Fe hydrogenase we use is an enzyme that functions in vivo bidirectionally for NAD+ reduction and NADH oxidation coupled to H2 uptake and H2 production, respectively. [1] In our design, the Ni-Fe hydrogenase works mainly to restore the nickel to a zero valence, which can help reduce nickel toxicity and collect nickel particles.

Usage and Biology

The Ni-Fe hydrogenase is made up of six major and three auxiliary subunits.

Characterization

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 577
    Illegal BglII site found at 1395
    Illegal BglII site found at 1688
    Illegal BglII site found at 2230
    Illegal BglII site found at 2308
    Illegal BamHI site found at 2596
    Illegal XhoI site found at 22
    Illegal XhoI site found at 2238
    Illegal XhoI site found at 2430
    Illegal XhoI site found at 2803
    Illegal XhoI site found at 4857
    Illegal XhoI site found at 5760
    Illegal XhoI site found at 6171
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 456
    Illegal NgoMIV site found at 994
    Illegal NgoMIV site found at 1204
    Illegal NgoMIV site found at 1516
    Illegal NgoMIV site found at 2896
    Illegal NgoMIV site found at 3496
    Illegal NgoMIV site found at 5860
    Illegal AgeI site found at 2191
    Illegal AgeI site found at 6658
    Illegal AgeI site found at 7680
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 2012
    Illegal BsaI site found at 2174
    Illegal BsaI site found at 4616
    Illegal BsaI.rc site found at 625
    Illegal BsaI.rc site found at 1129
    Illegal SapI.rc site found at 2123


References

  1. Teramoto, H., Shimizu, T., Suda, M., & Inui, M. (2022). Hydrogen production based on the heterologous expression of NAD+-reducing [NiFe]-hydrogenase from Cupriavidus necator in different genetic backgrounds of Escherichia coli strains. International Journal of Hydrogen Energy, 47(52), 22010–22021.