Difference between revisions of "Part:BBa K5398005"

Line 5: Line 5:
 
<p>In order to obtain proteins with self-healing properties, we used  the pET29a(+) vector to express TRn5 (BBa_K5398001) (Fig. 1). We tried different strategies for TRn5 protein production and purification and tested its function. </p>
 
<p>In order to obtain proteins with self-healing properties, we used  the pET29a(+) vector to express TRn5 (BBa_K5398001) (Fig. 1). We tried different strategies for TRn5 protein production and purification and tested its function. </p>
  
<html>
 
<center><img src="https://static.igem.wiki/teams/5398/trn5/the-plasmid-map-of-pet29a-trn5.png"with="500" height="" width="375" height=""/></center>
 
</html>
 
  
<p style="text-align: center!important;"><b>Fig. 2 The plasmid map of pET29a-TRn5.
+
====Protein expression====
</b></p>
+
  
<p>We expressed the protein in <i>E.coli</i> BL21 (DE3) using LB medium. After incubation at 37℃ for 5h and 30℃ for 9h, respectively, we found that most TRn5 (17.58 kDa) existed in precipitation and the TRn5 expression level at two temperatures had little difference (Fig. 2).</p>
+
<p>We expressed the protein in <i>E.coli</i> BL21 (DE3) using LB medium. After incubation at 37℃ for 5 h and 30℃ for 9 h, respectively, we found that most TRn5 (17.58 kDa) existed in precipitation and the TRn5 expression level at two temperatures had little difference (Fig. 1).</p>
  
<html>
+
<html lang="zh">
<center><img src="https://static.igem.wiki/teams/5398/trn5/sds-page-1-1.webp"with="500" height="" width="375" height=""/></center>
+
<head>
 +
    <meta charset="UTF-8">
 +
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
 +
    <style>
 +
        .module {
 +
            border: 1px solid #ccc; /* 边框 */
 +
            padding: 20px; /* 内边距 */
 +
            margin: 20px auto; /* 外边距,自动居中 */
 +
            width: 700px; /* 模块宽度 */
 +
            text-align: center; /* 内容居中 */
 +
            box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1); /* 阴影效果 */
 +
        }
 +
    </style>
 +
</head>
 +
<body>
 +
    <div class="module">
 +
        <img src="https://static.igem.wiki/teams/5398/trn5/sds-page-1-2.webp" width="600" height="auto" alt="Protein purification">
 +
        <p><b>Fig. 1 SDS-PAGE of expression products of TRn5.</b></p>
 +
    </div>
 +
</body>
 
</html>
 
</html>
  
<p style="text-align: center!important;"><b>Fig. 2 SDS-PAGE of expression products of TRn5. Lane 1: marker; lanes 2 to 4: whole-cell lysate, supernatant and pellet from uninduced cells at 23℃, respectively; lanes 5 to 7: whole-cell lysate, supernatant and pellet from induced cells at 23℃, respectively. lanes 8 to 10: whole-cell lysate, supernatant and pellet from uninduced cells at 37℃, respectively; lanes 11 to 13: whole-cell lysate, supernatant and pellet from induced cells at 37℃, respectively.
+
<p>Then, we purified TRn5 by Immobilized Metal Affinity Chromatography (IMAC). However, the TRn5 expression level was too low to verify by SDS-PAGE (Fig. 2).</p>
</b></p>
+
  
<p>Then, we purified TRn5 by Immobilized Metal Affinity Chromatography (IMAC). However, the TRn5 expression level was too low to verify by SDS-PAGE (Fig. 3).</p>
+
<html lang="zh">
 
+
<head>
<html>
+
    <meta charset="UTF-8">
<center><img src="https://static.igem.wiki/teams/5398/trn5/sds-page-2-1.webp"with="500" height="" width="375" height=""/></center>
+
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
 +
    <title>模块示例</title>
 +
    <style>
 +
        .module {
 +
*            border: 1px solid #ccc; /
 +
*            padding: 20px; /
 +
*            margin: 20px auto; /
 +
*            width: 500px; /
 +
*            text-align: center; /
 +
*            box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1); /
 +
        }
 +
    </style>
 +
</head>
 +
<body>
 +
    <div class="module">
 +
        <img src="https://static.igem.wiki/teams/5398/trn5/sds-page-2-1.webp" width="600" height="auto" alt="Protein purification">
 +
        <p><b>Fig. 2 SDS-PAGE of expression products of TRn5 purified by IMAC.</b></p>
 +
    <p>Lane 1: marker; lanes 2 to 11, induced cell sample at 23℃; lane 2: pellet; lane 3: sample washed with denaturing buffer with 8 mM urea; lane 4: sample after dialysis overnight; lane 5: sample after being bound to Ni-NTA resin; lane 6: sample eluted with 20 mM Tris-HCl; lane 7: sample eluted with 20 mM imidazole;  lane 8: sample eluted with 50 mM imidazole; lane 9: sample eluted with 150 mM imidazole; lane 10: sample eluted with 300 mM imidazole; lane 11: sample eluted with 500 mM imidazole.</p>
 +
    </div>
 +
</body>
 
</html>
 
</html>
  
<p style="text-align: center!important;"><b>Fig. 3 SDS-PAGE of expression products of TRn5 purified by IMAC. Lane 1: marker; lanes 2 to 11, induced cell sample at 23℃; lane 2: pellet; lane 3: sample washed with denaturing buffer with 8 mM urea; lane 4: sample after dialysis overnight; lane 5: sample after being bound to Ni-NTA resin; lane 6: sample eluted with 20 mM Tris-HCl; lane 7: sample eluted with 20 mM imidazole;  lane 8: sample eluted with 50 mM imidazole; lane 9: sample eluted with 150 mM imidazole; lane 10: sample eluted with 300 mM imidazole; lane 11: sample eluted with 500 mM imidazole.
 
</b></p>
 
  
<p>To optimize the TRn5 expression, we reviewed plenty of literature, from which we found that TRn5 could easily be dissolved in 5% acetic acid (pH≈3) due to the existence of Histidine. Thus, we used a new protocol to obtain the purified TRn5. Solubilized in 5% acetic acid, the band of TRn5 was seen clearly, which means success of this purification manner (Fig. 4).</p>
+
<p>To optimize the TRn5 expression, we reviewed plenty of literature, from which we found that TRn5 could easily be dissolved in 5% acetic acid (pH≈3) due to the existence of Histidine. Thus, we used a new protocol to obtain the purified TRn5. Solubilized in 5% acetic acid, the band of TRn5 was seen clearly, which means success of this purification manner (Fig. 3).</p>
  
<html>
+
<html lang="zh">
<center><img src="https://static.igem.wiki/teams/5398/trn5/sds-page-3-1.webp"with="300" height="" width="225" height=""/></center>
+
<head>
 +
    <meta charset="UTF-8">
 +
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
 +
    <title>模块示例</title>
 +
    <style>
 +
        .module {
 +
*            border: 1px solid #ccc; /
 +
*            padding: 20px; /
 +
*            margin: 20px auto; /
 +
*            width: 500px; /
 +
*            text-align: center; /
 +
*            box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1); /
 +
        }
 +
    </style>
 +
</head>
 +
<body>
 +
    <div class="module">
 +
        <img src="https://static.igem.wiki/teams/5398/trn5/sds-page-3-1.webp" width="375" height="auto" alt="Protein purification">
 +
        <p><b>Fig. 3 SDS-PAGE of expression products of TRn5 using a new protocol.</b></p>
 +
    <p>Lane 1: marker; lanes 2 to 4: whole-cell lysate, supernatant and pellet from induced cells at 37℃, respectively; lane 5: sample washed with 5% acetic acid.</p>
 +
    </div>
 +
</body>
 
</html>
 
</html>
  
<p style="text-align: center!important;"><b>Fig. 4 SDS-PAGE of expression products of TRn5 using a new protocol. Lane 1: marker; lanes 2 to 4: whole-cell lysate, supernatant and pellet from induced cells at 37℃, respectively; lane 5: sample washed with 5% acetic acid.
+
====Protein self-healing====
</b></p>
+
 
+
 
+
 
+
==== Reference ====
+
<p>[1] JUNG H, PENA-FRANCESCH A, SAADAT A, et al. Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins[J].<i> PNAS</i>, 2016, 113(23): 6478-6483.</p>
+
<p>[2] PENA-FRANCESCH A, JUNG H, DEMIREL M C, et al. Biosynthetic self-healing materials for soft machines [J]. <i>Nat. Mater.</i>, 2020, 19(11): 1230-1235.</p>
+
<p>[3] PENA-FRANCESCH A, FLOREZ S, JUNG H, et al. Materials Fabrication from Native and Recombinant Thermoplastic Squid Proteins[J].<i> Adv. Funct.</i>, 2014, 24(47): 7401-7409.</p>
+
<p>[4] GUERETTE P A, HOON S, SEOW Y, et al. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science[J]. <i>Nat. Biotechnol.</i>, 2013, 31(10): 908-915.</p>
+
<p>[5] DING D, GUERETTE P A, HOON S, et al. Biomimetic Production of Silk-Like Recombinant Squid Sucker Ring Teeth Proteins[J]. <i>Biomacromolecules</i>, 2014, 15(9): 3278-3289.</p>
+
 
+
  
  
Line 57: Line 98:
 
<partinfo>BBa_K5398005 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K5398005 SequenceAndFeatures</partinfo>
  
 +
===Reference ===
 +
<p>[1] JUNG H, PENA-FRANCESCH A, SAADAT A, et al. Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins[J].<i> PNAS</i>, 2016, 113(23): 6478-6483.</p>
 +
<p>[2] PENA-FRANCESCH A, JUNG H, DEMIREL M C, et al. Biosynthetic self-healing materials for soft machines [J]. <i>Nat. Mater.</i>, 2020, 19(11): 1230-1235.</p>
 +
<p>[3] PENA-FRANCESCH A, FLOREZ S, JUNG H, et al. Materials Fabrication from Native and Recombinant Thermoplastic Squid Proteins[J].<i> Adv. Funct.</i>, 2014, 24(47): 7401-7409.</p>
 +
<p>[4] GUERETTE P A, HOON S, SEOW Y, et al. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science[J]. <i>Nat. Biotechnol.</i>, 2013, 31(10): 908-915.</p>
 +
<p>[5] DING D, GUERETTE P A, HOON S, et al. Biomimetic Production of Silk-Like Recombinant Squid Sucker Ring Teeth Proteins[J]. <i>Biomacromolecules</i>, 2014, 15(9): 3278-3289.</p>
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  

Revision as of 14:48, 17 September 2024


pET29a(+)-TRn5

In order to obtain proteins with self-healing properties, we used the pET29a(+) vector to express TRn5 (BBa_K5398001) (Fig. 1). We tried different strategies for TRn5 protein production and purification and tested its function.


Protein expression

We expressed the protein in E.coli BL21 (DE3) using LB medium. After incubation at 37℃ for 5 h and 30℃ for 9 h, respectively, we found that most TRn5 (17.58 kDa) existed in precipitation and the TRn5 expression level at two temperatures had little difference (Fig. 1).

Protein purification

Fig. 1 SDS-PAGE of expression products of TRn5.

Then, we purified TRn5 by Immobilized Metal Affinity Chromatography (IMAC). However, the TRn5 expression level was too low to verify by SDS-PAGE (Fig. 2).

模块示例

Protein purification

Fig. 2 SDS-PAGE of expression products of TRn5 purified by IMAC.

Lane 1: marker; lanes 2 to 11, induced cell sample at 23℃; lane 2: pellet; lane 3: sample washed with denaturing buffer with 8 mM urea; lane 4: sample after dialysis overnight; lane 5: sample after being bound to Ni-NTA resin; lane 6: sample eluted with 20 mM Tris-HCl; lane 7: sample eluted with 20 mM imidazole; lane 8: sample eluted with 50 mM imidazole; lane 9: sample eluted with 150 mM imidazole; lane 10: sample eluted with 300 mM imidazole; lane 11: sample eluted with 500 mM imidazole.


To optimize the TRn5 expression, we reviewed plenty of literature, from which we found that TRn5 could easily be dissolved in 5% acetic acid (pH≈3) due to the existence of Histidine. Thus, we used a new protocol to obtain the purified TRn5. Solubilized in 5% acetic acid, the band of TRn5 was seen clearly, which means success of this purification manner (Fig. 3).

模块示例

Protein purification

Fig. 3 SDS-PAGE of expression products of TRn5 using a new protocol.

Lane 1: marker; lanes 2 to 4: whole-cell lysate, supernatant and pellet from induced cells at 37℃, respectively; lane 5: sample washed with 5% acetic acid.

Protein self-healing

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Reference

[1] JUNG H, PENA-FRANCESCH A, SAADAT A, et al. Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins[J]. PNAS, 2016, 113(23): 6478-6483.

[2] PENA-FRANCESCH A, JUNG H, DEMIREL M C, et al. Biosynthetic self-healing materials for soft machines [J]. Nat. Mater., 2020, 19(11): 1230-1235.

[3] PENA-FRANCESCH A, FLOREZ S, JUNG H, et al. Materials Fabrication from Native and Recombinant Thermoplastic Squid Proteins[J]. Adv. Funct., 2014, 24(47): 7401-7409.

[4] GUERETTE P A, HOON S, SEOW Y, et al. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science[J]. Nat. Biotechnol., 2013, 31(10): 908-915.

[5] DING D, GUERETTE P A, HOON S, et al. Biomimetic Production of Silk-Like Recombinant Squid Sucker Ring Teeth Proteins[J]. Biomacromolecules, 2014, 15(9): 3278-3289.