Difference between revisions of "Part:BBa K5226036"
Line 2: | Line 2: | ||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K5226036 short</partinfo> | <partinfo>BBa_K5226036 short</partinfo> | ||
− | + | ===Sequence and Features=== | |
+ | <partinfo>BBa_K5226036 SequenceAndFeatures</partinfo> | ||
+ | <br> | ||
===Introduction=== | ===Introduction=== | ||
− | The existing methods for large-scale production of P34HB primarily rely on microbial fermentation. A key limiting factor in this process is the molar ratio of 4HB. Increasing the 4HB molar ratio can lead to a decrease in the melting temperature and apparent fusion heat of the copolymer, as well as an improvement in the polymer's deformation resistance. Therefore, enhancing the molar ratio of 4HB is crucial for the modification of P34HB. | + | The existing methods for large-scale production of P34HB primarily rely on microbial fermentation. A key limiting factor in this process is <b>the molar ratio of 4HB</b>. Increasing the 4HB molar ratio can lead to a decrease in the melting temperature and apparent fusion heat of the copolymer, as well as an improvement in the polymer's deformation resistance. Therefore, enhancing the molar ratio of 4HB is crucial for the modification of P34HB. |
− | Prior to embarking on this project, our laboratory had already conducted research on the production of P34HB. It was found that the expression of the 4hbd-sucD-ogdA-orfZ gene cluster could increase the molar ratio of 4HB. Following fermentation using Mmp1 inducible promoter, the porin194 constitutive promoter was considered more suitable based on the concentration gradient induction trend observed with IPTG | + | Prior to embarking on this project, our laboratory had already conducted research on the production of P34HB. It was found that <b>the expression of the 4hbd-sucD-ogdA-orfZ gene cluster could increase the molar ratio of 4HB</b>. Following fermentation using Mmp1 inducible promoter, <b>the porin194 constitutive promoter</b> was considered more suitable based on the concentration gradient induction trend observed with IPTG. |
− | + | ||
− | + | ||
+ | Since two plasmids, pSEVA321 and pSEVA341, are commonly used in the laboratory, the gene cluster has only been previously expressed through the pSEVA321 plasmid. Our intention is to introduce the porin194-4hbd-sucD-ogdA-porin194-orfZ gene cluster into TD80 to synthesize P34HB, <b>utilizing both the pSEVA341 and pSEVA321 plasmids</b>, which allow us to <b>evaluate which plasmid yields better results</b>. | ||
===Usage and Biology=== | ===Usage and Biology=== | ||
− | This part is a native ribosomal binding site of sucD, which has not yet been characterized. | + | This part is a <b>native ribosomal binding site of sucD</b>, which has not yet been characterized. |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display |
Latest revision as of 02:52, 14 September 2024
RBS for sucD
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BamHI site found at 17
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Introduction
The existing methods for large-scale production of P34HB primarily rely on microbial fermentation. A key limiting factor in this process is the molar ratio of 4HB. Increasing the 4HB molar ratio can lead to a decrease in the melting temperature and apparent fusion heat of the copolymer, as well as an improvement in the polymer's deformation resistance. Therefore, enhancing the molar ratio of 4HB is crucial for the modification of P34HB.
Prior to embarking on this project, our laboratory had already conducted research on the production of P34HB. It was found that the expression of the 4hbd-sucD-ogdA-orfZ gene cluster could increase the molar ratio of 4HB. Following fermentation using Mmp1 inducible promoter, the porin194 constitutive promoter was considered more suitable based on the concentration gradient induction trend observed with IPTG.
Since two plasmids, pSEVA321 and pSEVA341, are commonly used in the laboratory, the gene cluster has only been previously expressed through the pSEVA321 plasmid. Our intention is to introduce the porin194-4hbd-sucD-ogdA-porin194-orfZ gene cluster into TD80 to synthesize P34HB, utilizing both the pSEVA341 and pSEVA321 plasmids, which allow us to evaluate which plasmid yields better results.
Usage and Biology
This part is a native ribosomal binding site of sucD, which has not yet been characterized.