Difference between revisions of "Part:BBa K5082005:Design"
Line 17: | Line 17: | ||
===References=== | ===References=== | ||
[1] Fischer, Joseph W et al. “Structure-Mediated RNA Decay by UPF1 and G3BP1.” Molecular cell vol. 78,1 (2020): 70-84.e6. doi:10.1016/j.molcel.2020.01.021 | [1] Fischer, Joseph W et al. “Structure-Mediated RNA Decay by UPF1 and G3BP1.” Molecular cell vol. 78,1 (2020): 70-84.e6. doi:10.1016/j.molcel.2020.01.021 | ||
− | |||
[2] Ermolenko, Dmitri N, and David H Mathews. “Making ends meet: New functions of mRNA secondary structure.” Wiley interdisciplinary reviews. RNA vol. 12,2 (2021): e1611. doi:10.1002/wrna.1611 | [2] Ermolenko, Dmitri N, and David H Mathews. “Making ends meet: New functions of mRNA secondary structure.” Wiley interdisciplinary reviews. RNA vol. 12,2 (2021): e1611. doi:10.1002/wrna.1611 | ||
− | |||
[3] Mestre-Fos, Santi et al. “eIF3 engages with 3'-UTR termini of highly translated mRNAs in neural progenitor cells.” bioRxiv : the preprint server for biology 2023.11.11.566681. 11 Nov. 2023, doi:10.1101/2023.11.11.566681. Preprint. | [3] Mestre-Fos, Santi et al. “eIF3 engages with 3'-UTR termini of highly translated mRNAs in neural progenitor cells.” bioRxiv : the preprint server for biology 2023.11.11.566681. 11 Nov. 2023, doi:10.1101/2023.11.11.566681. Preprint. | ||
− | |||
[4] Gaspar, Paulo et al. “mRNA secondary structure optimization using a correlated stem-loop prediction.” Nucleic acids research vol. 41,6 (2013): e73. doi:10.1093/nar/gks1473 | [4] Gaspar, Paulo et al. “mRNA secondary structure optimization using a correlated stem-loop prediction.” Nucleic acids research vol. 41,6 (2013): e73. doi:10.1093/nar/gks1473 | ||
− | + | [5] “RNAfold Web Server.” Univie.ac.at, 2024, rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi?PAGE=3&ID=aRk6YHn0WG. | |
− | [5] “RNAfold Web Server.” Univie.ac.at, 2024, rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi?PAGE=3&ID=aRk6YHn0WG | + | |
− | . | + | |
[6] Ge, Yidong et al. “The roles of G3BP1 in human diseases (review).” Gene vol. 821 (2022): 146294. doi:10.1016/j.gene.2022.146294 | [6] Ge, Yidong et al. “The roles of G3BP1 in human diseases (review).” Gene vol. 821 (2022): 146294. doi:10.1016/j.gene.2022.146294 | ||
− | |||
[7] Xiong, Rui et al. “G3BP1 activates the TGF-β/Smad signaling pathway to promote gastric cancer.” OncoTargets and therapy vol. 12 7149-7156. 2 Sep. 2019, doi:10.2147/OTT.S213728 | [7] Xiong, Rui et al. “G3BP1 activates the TGF-β/Smad signaling pathway to promote gastric cancer.” OncoTargets and therapy vol. 12 7149-7156. 2 Sep. 2019, doi:10.2147/OTT.S213728 |
Latest revision as of 09:28, 31 August 2024
In our project, we found that the G3BP1 protein was overexpressed in gastric cancer (GC) cells [6]. Meanwhile, G3BP1 could bind with HSU structures and lead to mRNA degradation [7]. Therefore, we fused the EIF3B-HSU sequence downstream to reporter genes: GFP and luciferase, to monitor G3BP1 levels and hence diagnose GC. The experimental outline is shown in Figure 2.
Figure 2. Experimental outline. (A) GFP sensor system. (B) Luciferase sensor system.
Design Notes
None
Source
None
References
[1] Fischer, Joseph W et al. “Structure-Mediated RNA Decay by UPF1 and G3BP1.” Molecular cell vol. 78,1 (2020): 70-84.e6. doi:10.1016/j.molcel.2020.01.021 [2] Ermolenko, Dmitri N, and David H Mathews. “Making ends meet: New functions of mRNA secondary structure.” Wiley interdisciplinary reviews. RNA vol. 12,2 (2021): e1611. doi:10.1002/wrna.1611 [3] Mestre-Fos, Santi et al. “eIF3 engages with 3'-UTR termini of highly translated mRNAs in neural progenitor cells.” bioRxiv : the preprint server for biology 2023.11.11.566681. 11 Nov. 2023, doi:10.1101/2023.11.11.566681. Preprint. [4] Gaspar, Paulo et al. “mRNA secondary structure optimization using a correlated stem-loop prediction.” Nucleic acids research vol. 41,6 (2013): e73. doi:10.1093/nar/gks1473 [5] “RNAfold Web Server.” Univie.ac.at, 2024, rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi?PAGE=3&ID=aRk6YHn0WG. [6] Ge, Yidong et al. “The roles of G3BP1 in human diseases (review).” Gene vol. 821 (2022): 146294. doi:10.1016/j.gene.2022.146294 [7] Xiong, Rui et al. “G3BP1 activates the TGF-β/Smad signaling pathway to promote gastric cancer.” OncoTargets and therapy vol. 12 7149-7156. 2 Sep. 2019, doi:10.2147/OTT.S213728