Difference between revisions of "Part:BBa K5082005:Design"

 
Line 1: Line 1:
  
 
__NOTOC__
 
__NOTOC__
<partinfo>BBa_K5082005 short</partinfo>
+
In our project, we found that the G3BP1 protein was overexpressed in gastric cancer (GC) cells [6]. Meanwhile, G3BP1 could bind with HSU structures and lead to mRNA degradation [7]. Therefore, we fused the EIF3B-HSU sequence downstream to reporter genes: GFP and luciferase, to monitor G3BP1 levels and hence diagnose GC. The experimental outline is shown in Figure 2.
 
+
<partinfo>BBa_K5082005 SequenceAndFeatures</partinfo>
+
  
 +
https://static.igem.wiki/teams/5407/eif3b-hsu-2.png
 +
Figure 2. Experimental outline. (A) GFP sensor system. (B) Luciferase sensor system.
  
 
===Design Notes===
 
===Design Notes===
12
+
None
  
  
Line 13: Line 13:
 
===Source===
 
===Source===
  
12
+
None
  
 
===References===
 
===References===
 +
[1] Fischer, Joseph W et al. “Structure-Mediated RNA Decay by UPF1 and G3BP1.” Molecular cell vol. 78,1 (2020): 70-84.e6. doi:10.1016/j.molcel.2020.01.021
 +
[2] Ermolenko, Dmitri N, and David H Mathews. “Making ends meet: New functions of mRNA secondary structure.” Wiley interdisciplinary reviews. RNA vol. 12,2 (2021): e1611. doi:10.1002/wrna.1611
 +
[3] Mestre-Fos, Santi et al. “eIF3 engages with 3'-UTR termini of highly translated mRNAs in neural progenitor cells.” bioRxiv : the preprint server for biology 2023.11.11.566681. 11 Nov. 2023, doi:10.1101/2023.11.11.566681. Preprint.
 +
[4] Gaspar, Paulo et al. “mRNA secondary structure optimization using a correlated stem-loop prediction.” Nucleic acids research vol. 41,6 (2013): e73. doi:10.1093/nar/gks1473
 +
[5] “RNAfold Web Server.” Univie.ac.at, 2024, rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi?PAGE=3&ID=aRk6YHn0WG.
 +
[6] Ge, Yidong et al. “The roles of G3BP1 in human diseases (review).” Gene vol. 821 (2022): 146294. doi:10.1016/j.gene.2022.146294
 +
[7] Xiong, Rui et al. “G3BP1 activates the TGF-β/Smad signaling pathway to promote gastric cancer.” OncoTargets and therapy vol. 12 7149-7156. 2 Sep. 2019, doi:10.2147/OTT.S213728

Revision as of 09:19, 31 August 2024


In our project, we found that the G3BP1 protein was overexpressed in gastric cancer (GC) cells [6]. Meanwhile, G3BP1 could bind with HSU structures and lead to mRNA degradation [7]. Therefore, we fused the EIF3B-HSU sequence downstream to reporter genes: GFP and luciferase, to monitor G3BP1 levels and hence diagnose GC. The experimental outline is shown in Figure 2.

eif3b-hsu-2.png Figure 2. Experimental outline. (A) GFP sensor system. (B) Luciferase sensor system.

Design Notes

None


Source

None

References

[1] Fischer, Joseph W et al. “Structure-Mediated RNA Decay by UPF1 and G3BP1.” Molecular cell vol. 78,1 (2020): 70-84.e6. doi:10.1016/j.molcel.2020.01.021 [2] Ermolenko, Dmitri N, and David H Mathews. “Making ends meet: New functions of mRNA secondary structure.” Wiley interdisciplinary reviews. RNA vol. 12,2 (2021): e1611. doi:10.1002/wrna.1611 [3] Mestre-Fos, Santi et al. “eIF3 engages with 3'-UTR termini of highly translated mRNAs in neural progenitor cells.” bioRxiv : the preprint server for biology 2023.11.11.566681. 11 Nov. 2023, doi:10.1101/2023.11.11.566681. Preprint. [4] Gaspar, Paulo et al. “mRNA secondary structure optimization using a correlated stem-loop prediction.” Nucleic acids research vol. 41,6 (2013): e73. doi:10.1093/nar/gks1473 [5] “RNAfold Web Server.” Univie.ac.at, 2024, rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi?PAGE=3&ID=aRk6YHn0WG. [6] Ge, Yidong et al. “The roles of G3BP1 in human diseases (review).” Gene vol. 821 (2022): 146294. doi:10.1016/j.gene.2022.146294 [7] Xiong, Rui et al. “G3BP1 activates the TGF-β/Smad signaling pathway to promote gastric cancer.” OncoTargets and therapy vol. 12 7149-7156. 2 Sep. 2019, doi:10.2147/OTT.S213728