Difference between revisions of "Part:BBa K5226030"
Line 3: | Line 3: | ||
<partinfo>BBa_K5226030 short</partinfo> | <partinfo>BBa_K5226030 short</partinfo> | ||
+ | ===Introduction=== | ||
Li et al. [1] analyzed the proteomic characteristics of Halomonas TD01 using SDS-PAGE. They identified a strongly expressed endogenous gene encoding a porin and preliminarily determined its promoter region. Furthermore, they identified the core region and constructed a constitutive promoter library by randomizing the sequences between the -35 and -10 regions. Shen et al. [2] performed 3-nucleotide saturation mutagenesis upstream of the -10 box and 4-nucleotide saturation mutagenesis within the -10 box to further expand the promoter library. | Li et al. [1] analyzed the proteomic characteristics of Halomonas TD01 using SDS-PAGE. They identified a strongly expressed endogenous gene encoding a porin and preliminarily determined its promoter region. Furthermore, they identified the core region and constructed a constitutive promoter library by randomizing the sequences between the -35 and -10 regions. Shen et al. [2] performed 3-nucleotide saturation mutagenesis upstream of the -10 box and 4-nucleotide saturation mutagenesis within the -10 box to further expand the promoter library. | ||
We have only included the porin constitutive promoters that are relevant to our team. | We have only included the porin constitutive promoters that are relevant to our team. | ||
− | + | ===Sequence and Features=== | |
− | === | + | |
− | + | ||
− | + | ||
− | + | ||
<partinfo>BBa_K5226030 SequenceAndFeatures</partinfo> | <partinfo>BBa_K5226030 SequenceAndFeatures</partinfo> | ||
+ | ===References=== | ||
+ | [1]Li T, Li T, Ji W, et al. Engineering of core promoter regions enables the construction of constitutive and inducible promoters in Halomonas sp[J]. Biotechnology Journal, 2016, 11(2): 219-227. | ||
+ | |||
+ | [2]Shen R, Yin J, Ye JW, Xiang RJ, Ning ZY, Huang WZ, Chen GQ. Promoter Engineering for Enhanced P(3HB- co-4HB) Production by Halomonas bluephagenesis. ACS Synth Biol. 2018 Aug 17;7(8):1897-1906. doi: 10.1021/acssynbio.8b00102. Epub 2018 Jul 31. PMID: 30024739. | ||
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display |
Revision as of 01:05, 20 August 2024
porin194
Introduction
Li et al. [1] analyzed the proteomic characteristics of Halomonas TD01 using SDS-PAGE. They identified a strongly expressed endogenous gene encoding a porin and preliminarily determined its promoter region. Furthermore, they identified the core region and constructed a constitutive promoter library by randomizing the sequences between the -35 and -10 regions. Shen et al. [2] performed 3-nucleotide saturation mutagenesis upstream of the -10 box and 4-nucleotide saturation mutagenesis within the -10 box to further expand the promoter library. We have only included the porin constitutive promoters that are relevant to our team.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
References
[1]Li T, Li T, Ji W, et al. Engineering of core promoter regions enables the construction of constitutive and inducible promoters in Halomonas sp[J]. Biotechnology Journal, 2016, 11(2): 219-227.
[2]Shen R, Yin J, Ye JW, Xiang RJ, Ning ZY, Huang WZ, Chen GQ. Promoter Engineering for Enhanced P(3HB- co-4HB) Production by Halomonas bluephagenesis. ACS Synth Biol. 2018 Aug 17;7(8):1897-1906. doi: 10.1021/acssynbio.8b00102. Epub 2018 Jul 31. PMID: 30024739.