Difference between revisions of "Part:BBa K4591002:Design"

(References)
 
Line 14: Line 14:
  
 
===References===
 
===References===
[1] From peking_iGEM 2013 wiki  
+
<p>[1] From peking_iGEM 2013 wiki </p>
[2] Figueiredo, R.; Llerena, J. P. P.; Kiyota, E.; Ferreira, S. S.;
+
<p>[2] Figueiredo, R.; Llerena, J. P. P.; Kiyota, E.; Ferreira, S. S.;
 
Cardeli, B. R.; Souza, S. C.; Brito, M. D. S.; Sodek, L.; Cesarino, I.;
 
Cardeli, B. R.; Souza, S. C.; Brito, M. D. S.; Sodek, L.; Cesarino, I.;
 
Mazzafera, P. The sugarcane ShMYB78 transcription factor activates
 
Mazzafera, P. The sugarcane ShMYB78 transcription factor activates
 
suberin biosynthesis in Nicotiana benthamiana. Plant Mol. Biol. 2020,
 
suberin biosynthesis in Nicotiana benthamiana. Plant Mol. Biol. 2020,
104, 411−427.
+
104, 411−427.</p><p>
 
[3] Majewski, P.; Gutowska, A.; Sacha, P.; Schneiders, T.;
 
[3] Majewski, P.; Gutowska, A.; Sacha, P.; Schneiders, T.;
 
Tryniszewska, E. Expression of AraC/XylS stress response regulators
 
Tryniszewska, E. Expression of AraC/XylS stress response regulators
 
in two distinct carbapenem-resistant Enterobacter cloacae ST89
 
in two distinct carbapenem-resistant Enterobacter cloacae ST89
biotypes. J. Antimicrob. Chemother. 2020, 75, 1146−1150.
+
biotypes. J. Antimicrob. Chemother. 2020, 75, 1146−1150.</p><p>
 
[4] Belmont-Monroy, L.; Saitz-Rojas, W.; Soria-Bustos, J.; Mickey,
 
[4] Belmont-Monroy, L.; Saitz-Rojas, W.; Soria-Bustos, J.; Mickey,
 
A. S.; Sherman, N. E.; Orsburn, B. C.; Ruiz-Perez, F.; Santiago, A. E.
 
A. S.; Sherman, N. E.; Orsburn, B. C.; Ruiz-Perez, F.; Santiago, A. E.
Characterization of a novel AraC/XylS-regulated family of N�acyltransferases in pathogens of the order Enterobacterales. PLoS
+
Characterization of a novel AraC/XylS-regulated family of Nacyltransferases in pathogens of the order Enterobacterales. PLoS
Pathog. 2020, 16, No. e1008776.
+
Pathog. 2020, 16, No. e1008776.</p><p>
 
[5] Ogawa, Y.; Katsuyama, Y.; Ueno, K.; Ohnishi, Y. Switching the
 
[5] Ogawa, Y.; Katsuyama, Y.; Ueno, K.; Ohnishi, Y. Switching the
 
ligand specificity of the biosensor XylS from meta to para-toluic acid
 
ligand specificity of the biosensor XylS from meta to para-toluic acid
 
through directed evolution exploiting a dual selection system. ACS
 
through directed evolution exploiting a dual selection system. ACS
Synth. Biol. 2019, 8, 2679−2689.
+
Synth. Biol. 2019, 8, 2679−2689.</p><p>
[6] Li, J., Nina, M. R. H., Zhang, X., & Bai, Y. (2022c). Engineering Transcription Factor XYLS for sensing phthalic acid and terephthalic acid: an application for enzyme evolution. ACS Synthetic Biology, 11(3), 1106–1113. https://doi.org/10.1021/acssynbio.1c00275
+
[6] Li, J., Nina, M. R. H., Zhang, X., & Bai, Y. (2022c). Engineering Transcription Factor XYLS for sensing phthalic acid and terephthalic acid: an application for enzyme evolution. ACS Synthetic Biology, 11(3), 1106–1113. https://doi.org/10.1021/acssynbio.1c00275</p><p>
 
[7] Mahr, R.; Frunzke, J. Transcription factor-based biosensors in
 
[7] Mahr, R.; Frunzke, J. Transcription factor-based biosensors in
 
biotechnology: current state and future prospects. Appl. Microbiol.
 
biotechnology: current state and future prospects. Appl. Microbiol.
Biotechnol. 2016, 100, 79−90.
+
Biotechnol. 2016, 100, 79−90.</p>

Latest revision as of 10:52, 12 October 2023


XylSmut

Searched form literature


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

Searched form literature

Source

Artificial mutation

References

[1] From peking_iGEM 2013 wiki

[2] Figueiredo, R.; Llerena, J. P. P.; Kiyota, E.; Ferreira, S. S.; Cardeli, B. R.; Souza, S. C.; Brito, M. D. S.; Sodek, L.; Cesarino, I.; Mazzafera, P. The sugarcane ShMYB78 transcription factor activates suberin biosynthesis in Nicotiana benthamiana. Plant Mol. Biol. 2020, 104, 411−427.

[3] Majewski, P.; Gutowska, A.; Sacha, P.; Schneiders, T.; Tryniszewska, E. Expression of AraC/XylS stress response regulators in two distinct carbapenem-resistant Enterobacter cloacae ST89

biotypes. J. Antimicrob. Chemother. 2020, 75, 1146−1150.

[4] Belmont-Monroy, L.; Saitz-Rojas, W.; Soria-Bustos, J.; Mickey, A. S.; Sherman, N. E.; Orsburn, B. C.; Ruiz-Perez, F.; Santiago, A. E. Characterization of a novel AraC/XylS-regulated family of Nacyltransferases in pathogens of the order Enterobacterales. PLoS

Pathog. 2020, 16, No. e1008776.

[5] Ogawa, Y.; Katsuyama, Y.; Ueno, K.; Ohnishi, Y. Switching the ligand specificity of the biosensor XylS from meta to para-toluic acid through directed evolution exploiting a dual selection system. ACS

Synth. Biol. 2019, 8, 2679−2689.

[6] Li, J., Nina, M. R. H., Zhang, X., & Bai, Y. (2022c). Engineering Transcription Factor XYLS for sensing phthalic acid and terephthalic acid: an application for enzyme evolution. ACS Synthetic Biology, 11(3), 1106–1113. https://doi.org/10.1021/acssynbio.1c00275

[7] Mahr, R.; Frunzke, J. Transcription factor-based biosensors in biotechnology: current state and future prospects. Appl. Microbiol.

Biotechnol. 2016, 100, 79−90.