Difference between revisions of "Part:BBa K4591002:Design"
(→References) |
|||
Line 14: | Line 14: | ||
===References=== | ===References=== | ||
− | [1] From peking_iGEM 2013 wiki | + | <p>[1] From peking_iGEM 2013 wiki </p> |
− | [2] Figueiredo, R.; Llerena, J. P. P.; Kiyota, E.; Ferreira, S. S.; | + | <p>[2] Figueiredo, R.; Llerena, J. P. P.; Kiyota, E.; Ferreira, S. S.; |
Cardeli, B. R.; Souza, S. C.; Brito, M. D. S.; Sodek, L.; Cesarino, I.; | Cardeli, B. R.; Souza, S. C.; Brito, M. D. S.; Sodek, L.; Cesarino, I.; | ||
Mazzafera, P. The sugarcane ShMYB78 transcription factor activates | Mazzafera, P. The sugarcane ShMYB78 transcription factor activates | ||
suberin biosynthesis in Nicotiana benthamiana. Plant Mol. Biol. 2020, | suberin biosynthesis in Nicotiana benthamiana. Plant Mol. Biol. 2020, | ||
− | 104, 411−427. | + | 104, 411−427.</p><p> |
[3] Majewski, P.; Gutowska, A.; Sacha, P.; Schneiders, T.; | [3] Majewski, P.; Gutowska, A.; Sacha, P.; Schneiders, T.; | ||
Tryniszewska, E. Expression of AraC/XylS stress response regulators | Tryniszewska, E. Expression of AraC/XylS stress response regulators | ||
in two distinct carbapenem-resistant Enterobacter cloacae ST89 | in two distinct carbapenem-resistant Enterobacter cloacae ST89 | ||
− | biotypes. J. Antimicrob. Chemother. 2020, 75, 1146−1150. | + | biotypes. J. Antimicrob. Chemother. 2020, 75, 1146−1150.</p><p> |
[4] Belmont-Monroy, L.; Saitz-Rojas, W.; Soria-Bustos, J.; Mickey, | [4] Belmont-Monroy, L.; Saitz-Rojas, W.; Soria-Bustos, J.; Mickey, | ||
A. S.; Sherman, N. E.; Orsburn, B. C.; Ruiz-Perez, F.; Santiago, A. E. | A. S.; Sherman, N. E.; Orsburn, B. C.; Ruiz-Perez, F.; Santiago, A. E. | ||
− | Characterization of a novel AraC/XylS-regulated family of | + | Characterization of a novel AraC/XylS-regulated family of Nacyltransferases in pathogens of the order Enterobacterales. PLoS |
− | Pathog. 2020, 16, No. e1008776. | + | Pathog. 2020, 16, No. e1008776.</p><p> |
[5] Ogawa, Y.; Katsuyama, Y.; Ueno, K.; Ohnishi, Y. Switching the | [5] Ogawa, Y.; Katsuyama, Y.; Ueno, K.; Ohnishi, Y. Switching the | ||
ligand specificity of the biosensor XylS from meta to para-toluic acid | ligand specificity of the biosensor XylS from meta to para-toluic acid | ||
through directed evolution exploiting a dual selection system. ACS | through directed evolution exploiting a dual selection system. ACS | ||
− | Synth. Biol. 2019, 8, 2679−2689. | + | Synth. Biol. 2019, 8, 2679−2689.</p><p> |
− | [6] Li, J., Nina, M. R. H., Zhang, X., & Bai, Y. (2022c). Engineering Transcription Factor XYLS for sensing phthalic acid and terephthalic acid: an application for enzyme evolution. ACS Synthetic Biology, 11(3), 1106–1113. https://doi.org/10.1021/acssynbio.1c00275 | + | [6] Li, J., Nina, M. R. H., Zhang, X., & Bai, Y. (2022c). Engineering Transcription Factor XYLS for sensing phthalic acid and terephthalic acid: an application for enzyme evolution. ACS Synthetic Biology, 11(3), 1106–1113. https://doi.org/10.1021/acssynbio.1c00275</p><p> |
[7] Mahr, R.; Frunzke, J. Transcription factor-based biosensors in | [7] Mahr, R.; Frunzke, J. Transcription factor-based biosensors in | ||
biotechnology: current state and future prospects. Appl. Microbiol. | biotechnology: current state and future prospects. Appl. Microbiol. | ||
− | Biotechnol. 2016, 100, 79−90. | + | Biotechnol. 2016, 100, 79−90.</p> |
Latest revision as of 10:52, 12 October 2023
XylSmut
Searched form literature
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
Searched form literature
Source
Artificial mutation
References
[1] From peking_iGEM 2013 wiki
[2] Figueiredo, R.; Llerena, J. P. P.; Kiyota, E.; Ferreira, S. S.; Cardeli, B. R.; Souza, S. C.; Brito, M. D. S.; Sodek, L.; Cesarino, I.; Mazzafera, P. The sugarcane ShMYB78 transcription factor activates suberin biosynthesis in Nicotiana benthamiana. Plant Mol. Biol. 2020, 104, 411−427.
[3] Majewski, P.; Gutowska, A.; Sacha, P.; Schneiders, T.; Tryniszewska, E. Expression of AraC/XylS stress response regulators in two distinct carbapenem-resistant Enterobacter cloacae ST89
biotypes. J. Antimicrob. Chemother. 2020, 75, 1146−1150.
[4] Belmont-Monroy, L.; Saitz-Rojas, W.; Soria-Bustos, J.; Mickey, A. S.; Sherman, N. E.; Orsburn, B. C.; Ruiz-Perez, F.; Santiago, A. E. Characterization of a novel AraC/XylS-regulated family of Nacyltransferases in pathogens of the order Enterobacterales. PLoS
Pathog. 2020, 16, No. e1008776.
[5] Ogawa, Y.; Katsuyama, Y.; Ueno, K.; Ohnishi, Y. Switching the ligand specificity of the biosensor XylS from meta to para-toluic acid through directed evolution exploiting a dual selection system. ACS
Synth. Biol. 2019, 8, 2679−2689.[6] Li, J., Nina, M. R. H., Zhang, X., & Bai, Y. (2022c). Engineering Transcription Factor XYLS for sensing phthalic acid and terephthalic acid: an application for enzyme evolution. ACS Synthetic Biology, 11(3), 1106–1113. https://doi.org/10.1021/acssynbio.1c00275
[7] Mahr, R.; Frunzke, J. Transcription factor-based biosensors in biotechnology: current state and future prospects. Appl. Microbiol.
Biotechnol. 2016, 100, 79−90.