Difference between revisions of "Part:BBa K4579029"

 
Line 3: Line 3:
 
<partinfo>BBa_K4579029 short</partinfo>
 
<partinfo>BBa_K4579029 short</partinfo>
  
[long desc]
 
  
<!-- Add more about the biology of this part here
+
<h1>Introduction</h1>
===Usage and Biology===
+
The 2023 UT Austin iGEM Team’s modular microcin expression parts collection includes parts necessary for engineering a bacterial chassis to secrete microcins, a type of small antimicrobial peptide. Our team has specifically designed parts to engineer a modular two-plasmid system that facilitates extracellular secretion of microcins by the chassis. One plasmid contains the microcin with a signal peptide sequence that indicates to the cell that the microcin is to be secreted. The other plasmid (pSK01) is from the literature (Kim et al., 2023) and contains genes for the proteins CvaA and CvaB, which are necessary to secrete small peptides using the <i>E. coli</i> microcin V (MccV) type I secretion system (T1SS) shown in Figure 2 of our <html><a href="https://2023.igem.wiki/austin-utexas/description">Project Description.</a></html>
 +
 
 +
Our parts collection includes a a selection of promoter (Type 2), coding sequence (Type 3), and terminator/regulatory gene (Type 4) parts that can be easily assembled to express microcins either constitutively or under inducible control. This allows for the modular engineering of microcin expression plasmids containing various microcins that can undergo extracellular secretion when used in conjunction with the secretion system plasmid pSK01.
 +
 
 +
<html><center><img src=https://static.igem.wiki/teams/4579/wiki/parts-collection-by-type.jpeg style="width:900px;height:auto;"></center></html>
 +
<center><b>Figure 1.</b> <i>Basic parts categorized by their BTK/YTK part type. Type 3p and 3q parts assemble as if they were a single Type 3 part.</i> </center>
 +
 
 +
Our basic and composite parts follow the Bee Toolkit/Yeast Toolkit standard of Golden Gate assembly (Lee et al., 2015; Leonard et al., 2018). Our assembly method involves the use of BsmBI digestion-ligation to create basic parts which can then be further digested with BsaI and ligated to form composite parts. The BTK/YTK standard includes part type-specific prefix and suffix overhangs generated by BsaI for each part, and these overhangs are NOT included in their sequences in the registry. For reference, our standard’s part type-specific overhangs are listed in Figure 2 on our <html><a href=" https://2023.igem.wiki/austin-utexas/parts">Parts page</a></html>.
 +
 
 +
<h1>Categorization</h1>
 +
 
 +
===Basic parts===
 +
<ul>
 +
<li><b>Promoters (Type 2)</b> – Seven inducible promoters selected due to their relatively high dynamic range (Meyer et al., 2019) and apparent functionality in a variety of Proteobacteria (Schuster & Reisch, 2021), and one constitutive CP25 promoter (Leonard et al., 2018).</li>
 +
 
 +
<li><b>Coding Sequences (Type 3)</b> – Signal peptide + microcin fusion coding sequences, a green fluorescent protein gene, and secretion system genes <i>cvaA</i> and <i>cvaB</i> which are together referred to as CvaAB.</li>
 +
 
 +
<li><b>Terminators/Regulatory Genes (Type 4)</b> – An <i>rpoC</i> terminator plus a collection of seven regulatory genes, each associated with one of our seven inducible promoters.</li>
 +
</ul>
 +
 
 +
===Composite parts===
 +
<ul>
 +
<li><b>Constitutive Microcin Expression Assemblies</b> - Assemblies of microcins (some with immunity proteins) with a constitutive CP25 promoter and <i>rpoC</i> terminator. These function alongside pSK01 in a two-plasmid secretion system, and we use these two-plasmid systems to assess if our novel microcins are effective inhibitors of pathogenic targets.</li>
 +
 
 +
<li><b>Inducible GFP Expression Assemblies</b> – Assemblies of GFP under the control of various inducible promoter systems. These were used to assess the dynamic range of our inducible promoter systems.</li>
 +
 
 +
<li><b>Inducible Microcin Expression Assemblies</b> – Assemblies of select microcins under the control of an inducible promoter system.</li>
 +
</ul>
 +
 
 +
 
 +
 
 +
<h1>Usage and Biology</h1>
 +
This is a Type 4 part that includes a terminator upstream of a transcriptional unit that constitutively expresses a regulatory transcription factor. This part can be used in conjunction with the Type 2 P</sub>CymRC</sub> promoter part to regulate transcription of a Type 3 (or Type 3p+3q) coding sequence determined by the user. In the absence of cuminic acid, transcription of the coding sequence is in a net ‘off’ state. When cuminic acid is added, it binds to CymR and removes it from P</sub>CymRC</sub> promoter. This turns transcription of the Type 3 coding sequence to the ‘on’ state. The terminator at the 5’ end of this part’s sequence marks the end of the preceding transcriptional unit started with the Type 2 promoter and Type 3 coding sequence parts. The remainder of this part’s sequence is the constitutively active transcriptional unit for CymR.
 +
 
 +
==Composite Parts==
 +
 
 +
<html><center><img src=https://static.igem.wiki/teams/4579/wiki/part-transcriptional-regulator.jpeg style="width:700px;height:auto;"></center></html>
 +
<center><b>Figure 2.</b> <i>The general schematic for our inducible microcin and GFP expression assemblies with emphasis on the transcriptional regulator. Although this example contains an immunity protein sequence, not all of our inducible microcin expression parts include an immunity protein.</i></center>
 +
 
 +
 
 +
<h1>Design Notes</h1>
 +
 
 +
When designing our transcriptional regulator parts, we chose to use the YFP expression individual sensor plasmids from the <i>E. coli </i>‘Marionette’ paper as PCR templates (Meyer et al., 2019) as these contain inducible promoters and their regulatory transcription factors controlling expression of YFP on a standardized backbone. Due to the homology of the backbone between these plasmids, we created universal primers that allowed us to amplify the regulator from any one of the sensor plasmids. 
 +
 
 +
<h1>Source</h1>
 +
This transcriptional regulator part was amplified from <html><a href="https://www.addgene.org/108525/">pAJM.657</a></html> using PCR before being integrated into a basic part plasmid for use in our assemblies. pAJM.657 contains YFP under inducible control by P<sub>CymRC</sub> and CymR.
 +
<h1>References</h1>
 +
<ol>
 +
<li>Cole, T. J., Parker, J. K., Feller, A. L., Wilke, C. O., & Davies, B. W. (2022). Evidence for widespread class II microcins in Enterobacterales Genomes. <i>Applied and Environmental Microbiology, 88</i>(23), e01486-22.</li>
 +
 
 +
<li>Kim, S. Y., Parker, J. K., Gonzalez-Magaldi, M., Telford, M. S., Leahy, D. J., & Davies, B. W. (2023). Export of Diverse and Bioactive Small Proteins through a Type I Secretion System. <i>Applied and Environmental Microbiology, 89</i>(5), e00335-23.</li>
 +
 
 +
<li>Lee, M. E., DeLoache, W. C., Cervantes, B., & Dueber, J. E. (2015). A highly characterized yeast toolkit for modular, multipart assembly. <i>ACS Synthetic Biology, 4</i>(9), 975-986.</li>
 +
 
 +
<li>Leonard, S. P., Perutka, J., Powell, J. E., Geng, P., Richhart, D. D., Byrom, M., Kar, S., Davies, B. W., Ellington, D. E., Moran, N. A., & Barrick, J. E. (2018). Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. <i>ACS Synthetic Biology, 7</i>(5), 1279-1290.</li>
 +
 
 +
<li>Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., & Voigt, C. A. (2019). Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. <i>Nature Chemical Biology, 15</i>(2), 196-204.</li>
 +
 
 +
<li>Schuster, L. A., & Reisch, C. R. (2021). A plasmid toolbox for controlled gene expression across the Proteobacteria. <i>Nucleic Acids Research, 49</i>(12), 7189-7202.</li>
 +
</ol>
 +
 
  
 
<!-- -->
 
<!-- -->

Revision as of 05:27, 12 October 2023


CymR repressor


Introduction

The 2023 UT Austin iGEM Team’s modular microcin expression parts collection includes parts necessary for engineering a bacterial chassis to secrete microcins, a type of small antimicrobial peptide. Our team has specifically designed parts to engineer a modular two-plasmid system that facilitates extracellular secretion of microcins by the chassis. One plasmid contains the microcin with a signal peptide sequence that indicates to the cell that the microcin is to be secreted. The other plasmid (pSK01) is from the literature (Kim et al., 2023) and contains genes for the proteins CvaA and CvaB, which are necessary to secrete small peptides using the E. coli microcin V (MccV) type I secretion system (T1SS) shown in Figure 2 of our Project Description.

Our parts collection includes a a selection of promoter (Type 2), coding sequence (Type 3), and terminator/regulatory gene (Type 4) parts that can be easily assembled to express microcins either constitutively or under inducible control. This allows for the modular engineering of microcin expression plasmids containing various microcins that can undergo extracellular secretion when used in conjunction with the secretion system plasmid pSK01.

Figure 1. Basic parts categorized by their BTK/YTK part type. Type 3p and 3q parts assemble as if they were a single Type 3 part.

Our basic and composite parts follow the Bee Toolkit/Yeast Toolkit standard of Golden Gate assembly (Lee et al., 2015; Leonard et al., 2018). Our assembly method involves the use of BsmBI digestion-ligation to create basic parts which can then be further digested with BsaI and ligated to form composite parts. The BTK/YTK standard includes part type-specific prefix and suffix overhangs generated by BsaI for each part, and these overhangs are NOT included in their sequences in the registry. For reference, our standard’s part type-specific overhangs are listed in Figure 2 on our Parts page.

Categorization

Basic parts

  • Promoters (Type 2) – Seven inducible promoters selected due to their relatively high dynamic range (Meyer et al., 2019) and apparent functionality in a variety of Proteobacteria (Schuster & Reisch, 2021), and one constitutive CP25 promoter (Leonard et al., 2018).
  • Coding Sequences (Type 3) – Signal peptide + microcin fusion coding sequences, a green fluorescent protein gene, and secretion system genes cvaA and cvaB which are together referred to as CvaAB.
  • Terminators/Regulatory Genes (Type 4) – An rpoC terminator plus a collection of seven regulatory genes, each associated with one of our seven inducible promoters.

Composite parts

  • Constitutive Microcin Expression Assemblies - Assemblies of microcins (some with immunity proteins) with a constitutive CP25 promoter and rpoC terminator. These function alongside pSK01 in a two-plasmid secretion system, and we use these two-plasmid systems to assess if our novel microcins are effective inhibitors of pathogenic targets.
  • Inducible GFP Expression Assemblies – Assemblies of GFP under the control of various inducible promoter systems. These were used to assess the dynamic range of our inducible promoter systems.
  • Inducible Microcin Expression Assemblies – Assemblies of select microcins under the control of an inducible promoter system.


Usage and Biology

This is a Type 4 part that includes a terminator upstream of a transcriptional unit that constitutively expresses a regulatory transcription factor. This part can be used in conjunction with the Type 2 P</sub>CymRC</sub> promoter part to regulate transcription of a Type 3 (or Type 3p+3q) coding sequence determined by the user. In the absence of cuminic acid, transcription of the coding sequence is in a net ‘off’ state. When cuminic acid is added, it binds to CymR and removes it from P</sub>CymRC</sub> promoter. This turns transcription of the Type 3 coding sequence to the ‘on’ state. The terminator at the 5’ end of this part’s sequence marks the end of the preceding transcriptional unit started with the Type 2 promoter and Type 3 coding sequence parts. The remainder of this part’s sequence is the constitutively active transcriptional unit for CymR.

Composite Parts

Figure 2. The general schematic for our inducible microcin and GFP expression assemblies with emphasis on the transcriptional regulator. Although this example contains an immunity protein sequence, not all of our inducible microcin expression parts include an immunity protein.


Design Notes

When designing our transcriptional regulator parts, we chose to use the YFP expression individual sensor plasmids from the E. coli ‘Marionette’ paper as PCR templates (Meyer et al., 2019) as these contain inducible promoters and their regulatory transcription factors controlling expression of YFP on a standardized backbone. Due to the homology of the backbone between these plasmids, we created universal primers that allowed us to amplify the regulator from any one of the sensor plasmids.

Source

This transcriptional regulator part was amplified from pAJM.657 using PCR before being integrated into a basic part plasmid for use in our assemblies. pAJM.657 contains YFP under inducible control by PCymRC and CymR.

References

  1. Cole, T. J., Parker, J. K., Feller, A. L., Wilke, C. O., & Davies, B. W. (2022). Evidence for widespread class II microcins in Enterobacterales Genomes. Applied and Environmental Microbiology, 88(23), e01486-22.
  2. Kim, S. Y., Parker, J. K., Gonzalez-Magaldi, M., Telford, M. S., Leahy, D. J., & Davies, B. W. (2023). Export of Diverse and Bioactive Small Proteins through a Type I Secretion System. Applied and Environmental Microbiology, 89(5), e00335-23.
  3. Lee, M. E., DeLoache, W. C., Cervantes, B., & Dueber, J. E. (2015). A highly characterized yeast toolkit for modular, multipart assembly. ACS Synthetic Biology, 4(9), 975-986.
  4. Leonard, S. P., Perutka, J., Powell, J. E., Geng, P., Richhart, D. D., Byrom, M., Kar, S., Davies, B. W., Ellington, D. E., Moran, N. A., & Barrick, J. E. (2018). Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synthetic Biology, 7(5), 1279-1290.
  5. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., & Voigt, C. A. (2019). Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nature Chemical Biology, 15(2), 196-204.
  6. Schuster, L. A., & Reisch, C. R. (2021). A plasmid toolbox for controlled gene expression across the Proteobacteria. Nucleic Acids Research, 49(12), 7189-7202.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 763
    Illegal XhoI site found at 798
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]