Difference between revisions of "Part:BBa K2549054"

(charactrization by mathematical modeling)
 
Line 32: Line 32:
 
<p class=MsoNormal align=center style='text-align:left;border:none;width:98% ;justify-content:center;'><span
 
<p class=MsoNormal align=center style='text-align:left;border:none;width:98% ;justify-content:center;'><span
 
lang=EN style='font-size:11.0pt;line-height:115%'>It is a confocal immunofluorescent analysis of 293T cells as they appear positive on the left and a confocal immunofluorescent analysis of HeLa cells as they appear negative on the right, and this was done using SV40 Large T antigen (D1E9E) Rabbit mAb, which appeared green, and actin filaments were labeled with DyLightTM 554 Phalloidin #13054, which appeared red. </span></p></div></html>
 
lang=EN style='font-size:11.0pt;line-height:115%'>It is a confocal immunofluorescent analysis of 293T cells as they appear positive on the left and a confocal immunofluorescent analysis of HeLa cells as they appear negative on the right, and this was done using SV40 Large T antigen (D1E9E) Rabbit mAb, which appeared green, and actin filaments were labeled with DyLightTM 554 Phalloidin #13054, which appeared red. </span></p></div></html>
==charactrization by mathematical modeling==
+
==charactrization by mathematical modeling by AFCM-Egypt==
 
Presence of SV40 NIS will aid transfer of transcription factor (VP64) to the nucleus to activate (ZF21.16 minCMV) promoter to start transcription of the internal circuit that secretes the exosome's cargo to produce our engineered exosomes.
 
Presence of SV40 NIS will aid transfer of transcription factor (VP64) to the nucleus to activate (ZF21.16 minCMV) promoter to start transcription of the internal circuit that secretes the exosome's cargo to produce our engineered exosomes.
 
<html><div align="center"style="border:solid #17252A; width:100%;float:center;"><img style="                              max-width:850px;
 
<html><div align="center"style="border:solid #17252A; width:100%;float:center;"><img style="                              max-width:850px;

Latest revision as of 19:55, 11 October 2023


SV40 NLS

This part is a short nuclear location signal sequence from SV40 large T antigen, the sequence of which is PKKKRKV. We use it to guide our zinc finger-based transcription factors to enter in the nucleus. It also enables other iGEM teams to construct their own artificial genetical devices to be located to the nucleus. We include this part as it is required for the parts collection Part:BBa_K2549016 ~ Part:BBa_K2549043.

Literature Characterization by AFCM-Egypt

The study made western blot analysis and confocal immunofluorescent analysis of 293T cells using SV40 Large T antigen.

The study used SV40 Large T Antigen (D1E9E) Rabbit mAb in the upper and β-Tubulin (D2N5G) Rabbit mAb #15115 in the lower, which were then assessed by Western blot analysis of extracts from 293 and 293T cells.





It is a confocal immunofluorescent analysis of 293T cells as they appear positive on the left and a confocal immunofluorescent analysis of HeLa cells as they appear negative on the right, and this was done using SV40 Large T antigen (D1E9E) Rabbit mAb, which appeared green, and actin filaments were labeled with DyLightTM 554 Phalloidin #13054, which appeared red.

charactrization by mathematical modeling by AFCM-Egypt

Presence of SV40 NIS will aid transfer of transcription factor (VP64) to the nucleus to activate (ZF21.16 minCMV) promoter to start transcription of the internal circuit that secretes the exosome's cargo to produce our engineered exosomes.

The graph shows the relation between activation of the internal domain of Syn-Notch and increasing the level of the engineered exosomes.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]