Difference between revisions of "Part:BBa K4830019:Design"

(References)
(Source)
Line 13: Line 13:
 
===Source===
 
===Source===
  
The TLR pegRNA 1 design contains the spacer and RTTPBS sequence was adapted from other pegRNAs in the Prime Editor 2 paper cited in References. With the help of TWIST Bioscience we synthesized those and other necessary sequences, and further combined with 65777 backbone in our lab.
+
The TLR pegRNA 1 design contains the spacer and RTTPBS sequence, which was adapted from other pegRNAs in the Prime Editor 2 paper cited in References. With the help of TWIST Bioscience we synthesized those and other necessary sequences, and further combined with 65777 backbone in our lab.
 +
 
 +
The designing of the TLR pegRNA 1 is also based on the TLR assay paper cited in References.
  
 
===References===
 
===References===

Revision as of 14:25, 11 October 2023


TLR pegRNA 1


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

No design considerations.


Source

The TLR pegRNA 1 design contains the spacer and RTTPBS sequence, which was adapted from other pegRNAs in the Prime Editor 2 paper cited in References. With the help of TWIST Bioscience we synthesized those and other necessary sequences, and further combined with 65777 backbone in our lab.

The designing of the TLR pegRNA 1 is also based on the TLR assay paper cited in References.

References

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019 Oct 21;576.

Certo, M. T., Ryu, B. Y., Annis, J. E., Garibov, M., Jarjour, J., Rawlings, D. J., & Scharenberg, A. M. (2011). Tracking genome engineering outcome at individual DNA breakpoints. Nature Methods, 8(8), 671–676.