Difference between revisions of "Part:BBa K4719003"
(→Introduction) |
|||
Line 4: | Line 4: | ||
===Introduction=== | ===Introduction=== | ||
− | Vilnius Lithuania iGEM 2023 team's goal was to create | + | <b>Vilnius-Lithuania iGEM 2023</b> team's goal was to create <b> synthetic biology tools for <i>in vivo</i> alterations of <i>Komagataeibacter xylinus</i> bacterial cellulose polymer composition</b>. Firstly, we chose to produce a <b>cellulose-chitin copolymer</b> that would later be deacetylated, creating <b>bacterial cellulose-chitosan</b>. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of the bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design. As a second approach, we designed <b>indigo-dyed cellulose</b> that could be used as a green chemistry way to apply cellulose in the textile industry. Lastly, we have achieved a of <b>bacterial cellulose and polyhydroxybutyrate (PHB) composite</b>, which is synthesized by <i>K. xylinus</i>. |
<br> | <br> | ||
<br> | <br> |
Latest revision as of 20:23, 9 October 2023
UAP1
Introduction
Vilnius-Lithuania iGEM 2023 team's goal was to create synthetic biology tools for in vivo alterations of Komagataeibacter xylinus bacterial cellulose polymer composition. Firstly, we chose to produce a cellulose-chitin copolymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of the bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design. As a second approach, we designed indigo-dyed cellulose that could be used as a green chemistry way to apply cellulose in the textile industry. Lastly, we have achieved a of bacterial cellulose and polyhydroxybutyrate (PHB) composite, which is synthesized by K. xylinus.
Bacterial cellulose-chitin polymer was achieved by increasing the production of UDP-N-acetylglucosamine (UDP-GlcNAc), which can be recognized as a viable substrate for cellulose synthase and incorporated in the bacterial cellulose polymer. We employed two strategies to produce this material. The first approach was to add N-acetylglucosamine into the growth medium BBa_K4719013, and the second one was the production of N-acetylglucosamine by K. xylinus from other sugars such as glucose, fructose, and saccharose in the growth medium BBa_K4719014.
Usage and Biology
UAP1 is UDP-GlcNAc pyrophosphorylase. The protein sequence is from Candida albicans. This protein is involved in UDP-GlcNAc synthesis by converting N-acetylglucosamine-6-phosphate into UDP-GlcNAc (1). The cellulose synthase can recognize both UDP-N-acetylglucosamine and UDP-glucose as substrates, resulting in the formation of bacterial cellulose-chitin polymer (2). This part is used in BBa_K4719013 and BBa_K4719014.
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal EcoRI site found at 573
Illegal EcoRI site found at 735
Illegal SpeI site found at 511
Illegal SpeI site found at 1399 - 12INCOMPATIBLE WITH RFC[12]Illegal EcoRI site found at 573
Illegal EcoRI site found at 735
Illegal SpeI site found at 511
Illegal SpeI site found at 1399 - 21INCOMPATIBLE WITH RFC[21]Illegal EcoRI site found at 573
Illegal EcoRI site found at 735 - 23INCOMPATIBLE WITH RFC[23]Illegal EcoRI site found at 573
Illegal EcoRI site found at 735
Illegal SpeI site found at 511
Illegal SpeI site found at 1399 - 25INCOMPATIBLE WITH RFC[25]Illegal EcoRI site found at 573
Illegal EcoRI site found at 735
Illegal SpeI site found at 511
Illegal SpeI site found at 1399 - 1000COMPATIBLE WITH RFC[1000]
References
1.Mio, T. et al. (1998a) ‘The Eukaryotic UDP-N-Acetylglucosamine Pyrophosphorylases’, Journal of Biological Chemistry, 273(23), pp. 14392–14397. doi:10.1074/jbc.273.23.14392.
2.Teh, M.Y. et al. (2019) ‘An expanded synthetic biology toolkit for gene expression control in acetobacteraceae’, ACS Synthetic Biology, 8(4), pp. 708–723. doi:10.1021/acssynbio.8b00168.