Difference between revisions of "Part:BBa K4768005"
Line 28: | Line 28: | ||
style="width:90%;" | style="width:90%;" | ||
src="https://static.igem.wiki/teams/4768/wiki/pertu-trastu/sl-pertu.png"> | src="https://static.igem.wiki/teams/4768/wiki/pertu-trastu/sl-pertu.png"> | ||
− | <figcaption class="normal"><span class="titre-image"><i><b>Figure 1: | + | <figcaption class="normal"><span class="titre-image"><i><b>Figure 1: Pertuzumab-SL-Nterm structure.</b></i></span></figcaption> |
</figure> | </figure> | ||
</div> | </div> | ||
Line 62: | Line 62: | ||
<h2>Production</h2> | <h2>Production</h2> | ||
− | <p>We first expressed part BBa_K4768005 from its DNA template using the PURE<I>free</I> 2.0 kit supplemented with SP6 RNAP. The reaction products were analyzed by SDS-PAGE. Because the theoretical molecular weight is 69 kDa, no other band from PURE system proteins was expected to migrate at this size. The protein pattern shown in Figure 4 exhibits an additional band around 69 kDa compared to the negative controls. This result indicates successful production of the full-length | + | <p>We first expressed part BBa_K4768005 from its DNA template using the PURE<I>free</I> 2.0 kit supplemented with SP6 RNAP. The reaction products were analyzed by SDS-PAGE. Because the theoretical molecular weight is 69 kDa, no other band from PURE system proteins was expected to migrate at this size. The protein pattern shown in Figure 4 exhibits an additional band around 69 kDa compared to the negative controls. This result indicates successful production of the full-length Pertuzumab-SL-Nterm in PUREfrex 2.0.</p> |
<div align="center"> | <div align="center"> | ||
Line 69: | Line 69: | ||
class="d-block" | class="d-block" | ||
style="width:70%;" | style="width:70%;" | ||
− | src="https://static.igem.wiki/teams/4768/wiki/ | + | src="https://static.igem.wiki/teams/4768/wiki/module-2/pertu-image-1.png"> |
− | <figcaption class="normal"><span class="titre-image"><i><b>Figure 4: SDS-PAGE | + | <figcaption class="normal"><span class="titre-image"><i><b>Figure 4: SDS-PAGE (10% polyacrylamide) analysis of Pertuzumab-SL-T7Nterm visualized by Instant Blue staining.</b> The arrowhead indicates the additional band corresponding to Pertuzumab-SL-T7Nterm (69 kDa). PURE<i>frex</i>2.0 was used. SP6 RNAP was added in the negative control (T-). In the positive control (T+), DHFR was expressed but the band ran out of the gel due to the low molecular weight.</i></span></figcaption> |
+ | </figure> | ||
+ | </div> | ||
+ | |||
+ | <p>Next, we produced Pertuzumab-SL-Nterm using the PURE<I>frex</I> 2.1 kit to promote disulfide bond formation due to non reducing conditions. SDS-PAGE analysis shows the expected band of the protein at 69 kDa (Figure 5).</p> | ||
+ | |||
+ | <div align="center"> | ||
+ | <figure class="normal mx-auto"> | ||
+ | <img | ||
+ | class="d-block" | ||
+ | style="width:70%;" | ||
+ | src="https://static.igem.wiki/teams/4768/wiki/module-2/pertu-image-2.png.jpg"> | ||
+ | <figcaption class="normal"><span class="titre-image"><i><b>Figure 5: SDS-PAGE (10% polyacrylamide) analysis of Pertuzumab-SL-T7Nterm visualized by co-translational labeling with GreenLys.</b> The arrowhead indicates the additional band corresponding to Pertuzumab-SL-T7Nterm (69 kDa). PURE<i>frex</i>2.1 was used. SP6 RNAP was added in the negative control (T-). In the positive control (T+), DHFR was expressed but the band ran out of the gel due to the low molecular weight..</i></span></figcaption> | ||
</figure> | </figure> | ||
</div> | </div> |
Revision as of 10:03, 8 October 2023
split T7 RNA polymerase (Nterm) conjugated to Pertuzumab with a soluble linker
Part for Expression of the split T7 RNA polymerase (Nterm) conjugated to Pertuzumab with a soluble linker in PURE System
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal XbaI site found at 40
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 636
- 23INCOMPATIBLE WITH RFC[23]Illegal XbaI site found at 40
- 25INCOMPATIBLE WITH RFC[25]Illegal XbaI site found at 40
Illegal AgeI site found at 1104 - 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 21
Illegal SapI.rc site found at 1740
Introduction
The CALIPSO part BBa_K4768005 is composed of the N-terminal subunit of the T7 RNA polymerase (residues 1 to 180) fused to the anti-HER2 antibody Pertuzumab through a soluble linker. This gene is under transcriptional control of an SP6 promoter and T7 terminator.
This part, coupled to the part BBa_K4768006 containing the C-terminal subunit of the T7 RNA polymerase, has been designed to develop a split T7 RNAP-based biosensor capable of recognizing HER-2, an epidermal growth factor that is overexpressed in cancer cells [1], in solution.
The HER2-induced T7 RNAP complex was designed from two existing constructs: a split T7 RNAP-based biosensor for the detection of rapamycin [2] and a split luciferase conjugated with antibodies capable of recognizing HER2 [3]. We decided to merge the relevant functionalities of these two constructs and created a new biosensor that transduces HER2 binding to gene expression activation.
Construction
The CALIPSO part BBa_K4768005 consists in the N-terminal subunit of the T7 RNA polymerase fused to Pertuzumab, an anti-HER2 antibody, on its C-terminal domain through an 8-amino-acid linker of glycine and serine residues. The synthesis of this gBlock was made by IDT.
The gBlock was then cloned into the pET_21a(+) plasmid and transformed into Stellar competent cells. Figure 3 shows the restriction profile of the resulting clones. Clone 8 was digested using BsaI. Two bands were expected at 1.3 kb and 5.8 kb. Clones 6 and 15 were digested using EcoRV and XhoI. Two bands were expected at 2.6 kb and 4.6 kb. Only clone 8 showed the expected pattern (lane 3). Plasmids from clones 6 and 15 seemed to be the initial pET_21a(+).
Production
We first expressed part BBa_K4768005 from its DNA template using the PUREfree 2.0 kit supplemented with SP6 RNAP. The reaction products were analyzed by SDS-PAGE. Because the theoretical molecular weight is 69 kDa, no other band from PURE system proteins was expected to migrate at this size. The protein pattern shown in Figure 4 exhibits an additional band around 69 kDa compared to the negative controls. This result indicates successful production of the full-length Pertuzumab-SL-Nterm in PUREfrex 2.0.
Next, we produced Pertuzumab-SL-Nterm using the PUREfrex 2.1 kit to promote disulfide bond formation due to non reducing conditions. SDS-PAGE analysis shows the expected band of the protein at 69 kDa (Figure 5).
Characterisation
TXXXXXX.
Conclusion and Perspectives
TXXXXXX.
References
- article 1 xxxxxxxx
- article 2 xxxxxxx