Difference between revisions of "Part:BBa K4765104"

Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K4765104 short</partinfo>
 
<partinfo>BBa_K4765104 short</partinfo>
 +
<html><img style="float:right;width:128px" src="https://static.igem.wiki/teams/4765/wiki/2023-b-home.png" alt="contributed by Fudan iGEM 2023"></html>
 +
__TOC__
 +
 
__TOC__
 
__TOC__
 
===Introduction===
 
===Introduction===

Revision as of 12:40, 1 October 2023

Twister P1 + T7_RBS + intimin-Nb2 fusion + stem-loop contributed by Fudan iGEM 2023


Introduction

We introduced a self-assembly synthetic adhesion system by transfecting initimin-Nb2 fusion into E. coli. Initimin-Nb2 fusion is composed of a surface display system(intimin) and the coding sequence of a nanobody. The surface display system, which includes a short N-terminal signal peptide to direct its trafficking to the periplasm, a LysM domain for peptidoglycan binding, and a beta-barrel for transmembrane insertion[1], possess the outer membrane anchoring of the nanobody[2]. We’ve constructed this fusion protein into our ribozyme-assisted polycistronic co-expression system:pRAP.

Usage and Biology

The surface-displayed nanobody can specifically interact with the antigen produced by ribozyme+strong RBS+intimin-Ag2 fusion+stem-loop .In our project, we took full advantage of the Ag-Nb interaction to create a biofilm with a programmable physical structure[3].

Characterization

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 1305

Reference

  1. Piñero-Lambea, C., Bodelón, G., Fernández-Periáñez, R., Cuesta, A. M., Álvarez-Vallina, L., & Fernández, L. Á. (2015). Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synthetic Biology, 4(4), 463–473. https://doi.org/10.1021/sb500252a
  2. Glass, D. S., & Riedel-Kruse, I. H. (2018). A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. Cell, 174(3), 649-658.e16. https://doi.org/10.1016/j.cell.2018.06.041
  3. Kim, H., Skinner, D. J., Glass, D. S., Hamby, A. E., Stuart, B. A. R., Dunkel, J., & Riedel-Kruse, I. H. (2022). 4-bit adhesion logic enables universal multicellular interface patterning. Nature, 608(7922), 324–329. https://doi.org/10.1038/s41586-022-04944-2