Difference between revisions of "Part:BBa K4814000"
Line 1: | Line 1: | ||
+ | <h1>hha</h1> | ||
+ | |||
Hha is a biofilm reducing protein which decreases initial biofilm formation (Hong, S. H., Lee, J., & Wood, T. K., 2010). Hha is a protein of the Hha family, and it is very similar to YmoA protein from Yersinia enterocolitica (Balsalobre, C., et al., 1996). Evidence has shown that hha interacts with H-NS, a type of chromatin-associated protein, which then expresses virulence factors (Madrid, C., Nieto, J. M., & Juárez, A., 2001). By using this protein, the bacteria will kill itself. This part is used together with RecA (BBa_K629001) to form a composite part (BBa_K4814001). | Hha is a biofilm reducing protein which decreases initial biofilm formation (Hong, S. H., Lee, J., & Wood, T. K., 2010). Hha is a protein of the Hha family, and it is very similar to YmoA protein from Yersinia enterocolitica (Balsalobre, C., et al., 1996). Evidence has shown that hha interacts with H-NS, a type of chromatin-associated protein, which then expresses virulence factors (Madrid, C., Nieto, J. M., & Juárez, A., 2001). By using this protein, the bacteria will kill itself. This part is used together with RecA (BBa_K629001) to form a composite part (BBa_K4814001). | ||
Revision as of 13:06, 28 September 2023
hha
Hha is a biofilm reducing protein which decreases initial biofilm formation (Hong, S. H., Lee, J., & Wood, T. K., 2010). Hha is a protein of the Hha family, and it is very similar to YmoA protein from Yersinia enterocolitica (Balsalobre, C., et al., 1996). Evidence has shown that hha interacts with H-NS, a type of chromatin-associated protein, which then expresses virulence factors (Madrid, C., Nieto, J. M., & Juárez, A., 2001). By using this protein, the bacteria will kill itself. This part is used together with RecA (BBa_K629001) to form a composite part (BBa_K4814001).
References:
Balsalobre, C., Juárez, A., Madrid, C., Mouriño, M., Prenafeta, A., & Muñoa, F. J. (1996). Complementation of the hha mutation in Escherichia coli by the ymoA gene from Yersinia enterocolitica: dependence on the gene dosage. Microbiology (Reading, England), 142 ( Pt 7), 1841–1846. https://doi.org/10.1099/13500872-142-7-1841
Hong, S. H., Lee, J., & Wood, T. K. (2010). Engineering global regulator Hha of Escherichia coli to control biofilm dispersal. Microbial biotechnology, 3(6), 717–728. https://doi.org/10.1111/j.1751-7915.2010.00220.x
Madrid, C., Nieto, J. M., & Juárez, A. (2001). Role of the Hha/YmoA family of proteins in the thermoregulation of the expression of virulence factors. International Journal of Medical Microbiology, 291(6-7), 425-432. https://doi.org/10.1078/1438-4221-00149
Sequence derived from: https://www.uniprot.org/uniprotkb/P0ACE6/entry