Difference between revisions of "Part:BBa K4586005"

(Usage)
Line 6: Line 6:
 
This part codes for the catalytic portion of ADAR2 (adenosine deaminases acting on double-stranded RNA) that converts adenosines (A) to inosines (I) in both coding and non-coding RNA transcripts. Through a process known as hybridization or deamination, In addition to conjugating this part to MCP (MS2 coat protein), which has an affinity for the MS2 hairpin structure.
 
This part codes for the catalytic portion of ADAR2 (adenosine deaminases acting on double-stranded RNA) that converts adenosines (A) to inosines (I) in both coding and non-coding RNA transcripts. Through a process known as hybridization or deamination, In addition to conjugating this part to MCP (MS2 coat protein), which has an affinity for the MS2 hairpin structure.
 
==Usage==
 
==Usage==
This part is implemented in our design to increase the effectivity and sensitivity of our therapeutic agent, as changing the status of the DART V ADAR switch from off to on is mediated through the ADAR enzyme by deamination of the mismatched adenosine group into an inosine group. Thus, the stop Codon UAG within the sensor of the switch will be converted into UIG, and the translation of the therapeutic agent will precede expressing Cas12k and MCP-ADAR2.  Thus, MCP-ADAR2 is creating a positive feedback loop that amplifies the signal transmitted from different cargo copies present within the target cell.
+
This part is implemented in our design to increase the effectivity and sensitivity of our therapeutic agent, as changing the status of the DART V ADAR switch from off to on is mediated through the ADAR enzyme by deamination of the mismatched adenosine group into an inosine group. Thus, the stop Codon UAG within the sensor of the switch will be converted into UIG, and the translation of the therapeutic agent will precede expressing Cas12k and MCP-ADAR2.  Thus, MCP-ADAR2 is creating a positive feedback loop that amplifies the signal transmitted from different cargo copies present within the target cell as shown in figure 1.
 +
<html><div align="center"style="border:solid #17252A; width:100%;float:center;"><img style="                              max-width:850px;
 +
width:100%;
 +
height:auto;
 +
position: relative;
 +
top: 50%;
 +
left: 45%;
 +
transform: translate( -50%);
 +
padding-bottom:25px;
 +
padding-top:25px;
 +
"src="https://static.igem.wiki/teams/4586/wiki/parts/ms2-sensor-mcp-adar-7.png
 +
">
 +
<p class=MsoNormal align=center style='text-align:left;border:none;width:98% ;justify-content:center;'><span
 +
lang=EN style='font-size:11.0pt;line-height:115%'>Figure 1: This figure illustrate the activity of our DART V ADAR tissue specific switch that is designed to be in the on state after recognition of the autoreactive B-cells,this recognition based on mismatched base editing in the level of transcribed RNA that is mediated through ADAR enzyme activity.  </span></p></div></html>
 +
 
  
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here

Revision as of 12:59, 22 September 2023


MCP-ADAR2

Part Description

This part codes for the catalytic portion of ADAR2 (adenosine deaminases acting on double-stranded RNA) that converts adenosines (A) to inosines (I) in both coding and non-coding RNA transcripts. Through a process known as hybridization or deamination, In addition to conjugating this part to MCP (MS2 coat protein), which has an affinity for the MS2 hairpin structure.

Usage

This part is implemented in our design to increase the effectivity and sensitivity of our therapeutic agent, as changing the status of the DART V ADAR switch from off to on is mediated through the ADAR enzyme by deamination of the mismatched adenosine group into an inosine group. Thus, the stop Codon UAG within the sensor of the switch will be converted into UIG, and the translation of the therapeutic agent will precede expressing Cas12k and MCP-ADAR2. Thus, MCP-ADAR2 is creating a positive feedback loop that amplifies the signal transmitted from different cargo copies present within the target cell as shown in figure 1.

Figure 1: This figure illustrate the activity of our DART V ADAR tissue specific switch that is designed to be in the on state after recognition of the autoreactive B-cells,this recognition based on mismatched base editing in the level of transcribed RNA that is mediated through ADAR enzyme activity.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]