Difference between revisions of "Part:BBa K4586025"

Line 2: Line 2:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K4586025 short</partinfo>
 
<partinfo>BBa_K4586025 short</partinfo>
  ==Description==  
+
   
 +
==Description==  
 +
 
 
The first component of Cargo is the CRISPR system, where we uses guide RNA to direct our Cas12k toward the BAFF-R gene in auto-reactive B-cells, and the second component is the DART V ADAR switch, where we uses ADAR enzyme to convert Adenosine into Inosine, causing a change in the switch condition from off to on status, but ADAR enzyme works only in the presence of complementary mRNA in the target cell to the sensor within the switch that contains the stop codon (UAG) of auto-reactive B-cells.
 
The first component of Cargo is the CRISPR system, where we uses guide RNA to direct our Cas12k toward the BAFF-R gene in auto-reactive B-cells, and the second component is the DART V ADAR switch, where we uses ADAR enzyme to convert Adenosine into Inosine, causing a change in the switch condition from off to on status, but ADAR enzyme works only in the presence of complementary mRNA in the target cell to the sensor within the switch that contains the stop codon (UAG) of auto-reactive B-cells.
 
This stop codon contains a mismatched Adenosine (A) group with the complementary mRNA; this group is hybridized by ADAR enzyme activity and converts to an Inosine group (I); thus, the stop codon sequence is disturbed in this condition and our cargo will be translated.  
 
This stop codon contains a mismatched Adenosine (A) group with the complementary mRNA; this group is hybridized by ADAR enzyme activity and converts to an Inosine group (I); thus, the stop codon sequence is disturbed in this condition and our cargo will be translated.  

Revision as of 10:37, 21 September 2023


Cargo (guide RNA - switch- Cas12k- MCP/ADAR)

Description

The first component of Cargo is the CRISPR system, where we uses guide RNA to direct our Cas12k toward the BAFF-R gene in auto-reactive B-cells, and the second component is the DART V ADAR switch, where we uses ADAR enzyme to convert Adenosine into Inosine, causing a change in the switch condition from off to on status, but ADAR enzyme works only in the presence of complementary mRNA in the target cell to the sensor within the switch that contains the stop codon (UAG) of auto-reactive B-cells. This stop codon contains a mismatched Adenosine (A) group with the complementary mRNA; this group is hybridized by ADAR enzyme activity and converts to an Inosine group (I); thus, the stop codon sequence is disturbed in this condition and our cargo will be translated.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 5988
    Illegal AgeI site found at 6100
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 1456