Difference between revisions of "Part:BBa K4719003"

Line 7: Line 7:
 
<br>
 
<br>
 
<br>
 
<br>
Bacterial cellulose-chitin polymer was achieved by increasing the production of UDP-N-acetylglucosamine (UDP-GlcNAc), which can be recognized as a viable substrate for cellulose synthase and incorporated in bacterial cellulose polymer. We employed two strategies to produce this material. The first approach was to add N-acetylglucosamine into the growth medium [[https://parts.igem.org/Part:BBa_K4719013BBa_K4719013]], and the second one was the production of N-acetylglucosamine by ''K. xylinus'' from simple sugars such as glucose, fructose, and saccharose in the growth medium [https://parts.igem.org/Part:BBa_K4719014 BBa_K4719014].  
+
Bacterial cellulose-chitin polymer was achieved by increasing the production of UDP-N-acetylglucosamine (UDP-GlcNAc), which can be recognized as a viable substrate for cellulose synthase and incorporated in bacterial cellulose polymer. We employed two strategies to produce this material. The first approach was to add N-acetylglucosamine into the growth medium [<partinfo> BBa_K4719013 <part info>, and the second one was the production of N-acetylglucosamine by ''K. xylinus'' from simple sugars such as glucose, fructose, and saccharose in the growth medium [https://parts.igem.org/Part:BBa_K4719014 BBa_K4719014].  
  
  

Revision as of 19:24, 9 September 2023


UAP1

Introduction

Vilnius Lithuania iGEM 2023 team's goal was to create a universal synthetic biology system in Komagataeibacter xylinus for in vivo bacterial cellulose polymer composition modification. Firstly, we chose to produce a cellulose-chitin polymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design.

Bacterial cellulose-chitin polymer was achieved by increasing the production of UDP-N-acetylglucosamine (UDP-GlcNAc), which can be recognized as a viable substrate for cellulose synthase and incorporated in bacterial cellulose polymer. We employed two strategies to produce this material. The first approach was to add N-acetylglucosamine into the growth medium [No part name specified with partinfo tag.