Difference between revisions of "Part:BBa K4719002"
Line 3: | Line 3: | ||
<partinfo>BBa_K4719002 short</partinfo> | <partinfo>BBa_K4719002 short</partinfo> | ||
− | + | ===Introduction=== | |
+ | Vilnius Lithuania iGEM 2023 team's goal was to create a universal synthetic biology system in ''Komagataeibacter xylinus'' for ''in vivo'' bacterial cellulose polymer composition modification. Firstly, we chose to produce a cellulose-chitin polymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design. | ||
+ | <br> | ||
+ | <br> | ||
+ | Bacterial cellulose-chitin polymer was achieved by increasing the production of UDP-N-acetylglucosamine, which can be recognized as a viable substrate for cellulose synthase and incorporated in bacterial cellulose polymer. We employed two strategies to produce this material. The first approach was to add N-acetylglucosamine into the growth medium [https://parts.igem.org/Part:BBa_K4719013 BBa_K4719013], and the second one was the production of N-acetylglucosamine by ''K. xylinus'' from simple sugars such as glucose, fructose, and saccharose in the growth medium [https://parts.igem.org/Part:BBa_K4719014 BBa_K4719014]. | ||
+ | |||
+ | |||
− | |||
===Usage and Biology=== | ===Usage and Biology=== | ||
+ | |||
+ | NAG5 is N-acetylglucosamine kinase. Component of the N-acetylglucosamine catabolic cascade that phosphorylates N-acetylglucosamine (GlcNAc), and allows the unique ability to utilise GlcNAc as carbon source. This part is used in [https://parts.igem.org/Part:BBa_K4719013 BBa_K4719013]. The function NAG5 has in our transcriptional unit is to convert extracellular N-acetylglucosamine into N-acetylglucosamine-6-phosphate, that is used as a substrate by AGM1 [https://parts.igem.org/Part:BBa_K4719001 BBa_K4719001]. | ||
+ | |||
<!-- --> | <!-- --> |
Revision as of 18:53, 9 September 2023
NAG5
Introduction
Vilnius Lithuania iGEM 2023 team's goal was to create a universal synthetic biology system in Komagataeibacter xylinus for in vivo bacterial cellulose polymer composition modification. Firstly, we chose to produce a cellulose-chitin polymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design.
Bacterial cellulose-chitin polymer was achieved by increasing the production of UDP-N-acetylglucosamine, which can be recognized as a viable substrate for cellulose synthase and incorporated in bacterial cellulose polymer. We employed two strategies to produce this material. The first approach was to add N-acetylglucosamine into the growth medium BBa_K4719013, and the second one was the production of N-acetylglucosamine by K. xylinus from simple sugars such as glucose, fructose, and saccharose in the growth medium BBa_K4719014.
Usage and Biology
NAG5 is N-acetylglucosamine kinase. Component of the N-acetylglucosamine catabolic cascade that phosphorylates N-acetylglucosamine (GlcNAc), and allows the unique ability to utilise GlcNAc as carbon source. This part is used in BBa_K4719013. The function NAG5 has in our transcriptional unit is to convert extracellular N-acetylglucosamine into N-acetylglucosamine-6-phosphate, that is used as a substrate by AGM1 BBa_K4719001.
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal EcoRI site found at 198
Illegal SpeI site found at 985 - 12INCOMPATIBLE WITH RFC[12]Illegal EcoRI site found at 198
Illegal SpeI site found at 985 - 21INCOMPATIBLE WITH RFC[21]Illegal EcoRI site found at 198
Illegal BamHI site found at 1489 - 23INCOMPATIBLE WITH RFC[23]Illegal EcoRI site found at 198
Illegal SpeI site found at 985 - 25INCOMPATIBLE WITH RFC[25]Illegal EcoRI site found at 198
Illegal SpeI site found at 985 - 1000COMPATIBLE WITH RFC[1000]