Difference between revisions of "Part:BBa K4719002"

 
Line 3: Line 3:
 
<partinfo>BBa_K4719002 short</partinfo>
 
<partinfo>BBa_K4719002 short</partinfo>
  
GlcNac kinase
+
===Introduction===
 +
Vilnius Lithuania iGEM 2023 team's goal was to create a universal synthetic biology system in ''Komagataeibacter xylinus'' for ''in vivo'' bacterial cellulose polymer composition modification. Firstly, we chose to produce a cellulose-chitin polymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design.
 +
<br>
 +
<br>
 +
Bacterial cellulose-chitin polymer was achieved by increasing the production of UDP-N-acetylglucosamine, which can be recognized as a viable substrate for cellulose synthase and incorporated in bacterial cellulose polymer. We employed two strategies to produce this material. The first approach was to add N-acetylglucosamine into the growth medium [https://parts.igem.org/Part:BBa_K4719013 BBa_K4719013], and the second one was the production of N-acetylglucosamine by ''K. xylinus'' from simple sugars such as glucose, fructose, and saccharose in the growth medium [https://parts.igem.org/Part:BBa_K4719014 BBa_K4719014].
 +
 
 +
 
  
<!-- Add more about the biology of this part here
 
 
===Usage and Biology===
 
===Usage and Biology===
 +
 +
NAG5 is N-acetylglucosamine kinase. Component of the N-acetylglucosamine catabolic cascade that phosphorylates N-acetylglucosamine (GlcNAc), and allows the unique ability to utilise GlcNAc as carbon source. This part is used in [https://parts.igem.org/Part:BBa_K4719013 BBa_K4719013]. The function NAG5 has in our transcriptional unit is to convert extracellular N-acetylglucosamine into N-acetylglucosamine-6-phosphate, that is used as a substrate by AGM1 [https://parts.igem.org/Part:BBa_K4719001 BBa_K4719001].
 +
  
 
<!-- -->
 
<!-- -->

Revision as of 18:53, 9 September 2023


NAG5

Introduction

Vilnius Lithuania iGEM 2023 team's goal was to create a universal synthetic biology system in Komagataeibacter xylinus for in vivo bacterial cellulose polymer composition modification. Firstly, we chose to produce a cellulose-chitin polymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design.

Bacterial cellulose-chitin polymer was achieved by increasing the production of UDP-N-acetylglucosamine, which can be recognized as a viable substrate for cellulose synthase and incorporated in bacterial cellulose polymer. We employed two strategies to produce this material. The first approach was to add N-acetylglucosamine into the growth medium BBa_K4719013, and the second one was the production of N-acetylglucosamine by K. xylinus from simple sugars such as glucose, fructose, and saccharose in the growth medium BBa_K4719014.


Usage and Biology

NAG5 is N-acetylglucosamine kinase. Component of the N-acetylglucosamine catabolic cascade that phosphorylates N-acetylglucosamine (GlcNAc), and allows the unique ability to utilise GlcNAc as carbon source. This part is used in BBa_K4719013. The function NAG5 has in our transcriptional unit is to convert extracellular N-acetylglucosamine into N-acetylglucosamine-6-phosphate, that is used as a substrate by AGM1 BBa_K4719001.


Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal EcoRI site found at 198
    Illegal SpeI site found at 985
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal EcoRI site found at 198
    Illegal SpeI site found at 985
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal EcoRI site found at 198
    Illegal BamHI site found at 1489
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal EcoRI site found at 198
    Illegal SpeI site found at 985
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal EcoRI site found at 198
    Illegal SpeI site found at 985
  • 1000
    COMPATIBLE WITH RFC[1000]