Difference between revisions of "Part:BBa K4182002"
Line 65: | Line 65: | ||
FIG.6 The relative mRNA level of GFP of PAVVDH-Pc, PAVVDH-J2301 and PAVVDH-porin by RT-qPCR | FIG.6 The relative mRNA level of GFP of PAVVDH-Pc, PAVVDH-J2301 and PAVVDH-porin by RT-qPCR | ||
− | As shown in Figure 5, without blue-light induction, a higher VVD transcription level was observed when porin promoter was used to control the expression of VVD-AraC fusion protein, compared to J23101 promoter. It indicated the tight and more precise regulation by porin promoter. It is further proved in Figure 6 that porin promoter exhibited a higher fluorescence, a wider dynamic range and better sensitivity when induced by blue light than the native PC promoter and J23101 promoter. Therefore, the plasmid PAVVDH-porin was selected for our further studies, but J231010 promoter is | + | As shown in Figure 5, without blue-light induction, a higher VVD transcription level was observed when porin promoter was used to control the expression of VVD-AraC fusion protein, compared to J23101 promoter. It indicated the tight and more precise regulation by porin promoter. It is further proved in Figure 6 that porin promoter exhibited a higher fluorescence, a wider dynamic range and better sensitivity when induced by blue light than the native PC promoter and J23101 promoter. Therefore, the plasmid PAVVDH-porin was selected for our further studies, but J231010 promoter is still a good trial. |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
Latest revision as of 20:38, 13 October 2022
J23101-eSD-VVD-AraC
To realize the controllable synthesis and release of products, we developed the blue-light inducible system by replacing the arabinose binding and dimerization domain of arabinose operon with blue-light responsive VVD domain, generating VVD-AraC fusion protein, which will dimerization under light and promote the downstream PBAD promoter.We selected sfGFP as the reporter to verify the regulation of the system. In order to test the effect of VVD-AraC expression level on the downstream gene expression, three promoters-native Pc, J23101 and porin promoter was selected in our study (BBa_K4182001, BBa_K4182002, BBa_K4182003).
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal PstI site found at 634
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 28
Illegal PstI site found at 634 - 21COMPATIBLE WITH RFC[21]
- 23INCOMPATIBLE WITH RFC[23]Illegal PstI site found at 634
- 25INCOMPATIBLE WITH RFC[25]Illegal PstI site found at 634
- 1000COMPATIBLE WITH RFC[1000]
Profile
Base Pairs
894
Design Notes
The codon of E. coli was optimized
Source
E.coli&Neurosparo ceassa
Usage&Test
Based on the above information, we designed the upstream regulator- the chimeric VVD-AraC fusion protein by replacing the arabinose binding and dimerization domain of arabinose operon with a blue-light responsive VVD domain, which will dimerization under light and promote the downstream PBAD promoter. We selected sfGFP as the reporter to verify the regulation of the system. In order to test the effect of VVD-AraC expression level on the downstream gene expression, three promoters-native Pc, J23101 and porin promoter was selected in our study (BBa_K4182001, BBa_K4182002, BBa_K4182003). Although the J23101 promoter is not the best, we still want to share our results.
FIG. 1 The blue light induced circuit
The VVD gene from Streptomyces were chemically synthesized, and the AraC-ParaBAD promoter in arabinose operon was amplified from Escherichia coli, and eSD from E. coli was served as the ribosome binding site. The three promoters-native Pc, J23101, and porin was obtained by PCR. All the fragments were ligated into pBBRMCS1 vector in one step via Golden Gate Assembly.The recombinant plasmids were verified by colony PCR as shown in Figure 3. As a result, three plasmids PVVDH-Pc, PVVDH-J23101, PVVDH-porin, were successfully constructed for further test including cell growth and the expression of GFP.
FIG.2-3 PCR result of J23101-VVD fragment and colony PCR verification of plasmid PAVVDH-J23101
To test expression of sfGFP of the three plasmids, we developed a weak blue light induction system, which is mainly consist of a blue light plate and Pulse Width Modulation (PWM) module powered by USB. The size of the light plate is 20cm*20cm, the blue wavelength is 470nm. As the intensity of the commonly used blue light is higher than what we need in our experiment, the PWM module was employed here to adjust the intensity of light to about 5W/m2.
FIG.4 The self-made weak blue light induction system
The recombinant DH5a cells harboring the blue-light inducible plasmids were cultivated at 37℃ to OD600=0.6-0.8, then cells were exposed to the self-made blue light induction system for 4 hours, and the control ones without blue-light were covered by aluminium foil. The cell density (OD600) and the fluorescent intensity of sfGFP were detected every 1 h. The results are shown as follows.
FIG.5 mRNA level of VVD under different promoters without blue light
FIG.6 The relative mRNA level of GFP of PAVVDH-Pc, PAVVDH-J2301 and PAVVDH-porin by RT-qPCR
As shown in Figure 5, without blue-light induction, a higher VVD transcription level was observed when porin promoter was used to control the expression of VVD-AraC fusion protein, compared to J23101 promoter. It indicated the tight and more precise regulation by porin promoter. It is further proved in Figure 6 that porin promoter exhibited a higher fluorescence, a wider dynamic range and better sensitivity when induced by blue light than the native PC promoter and J23101 promoter. Therefore, the plasmid PAVVDH-porin was selected for our further studies, but J231010 promoter is still a good trial.
References
[1] ROMANO E, BAUMSCHLAGER A, AKMERIÇ E B, et al. Engineering AraC to make it responsive to light instead of arabinose [J]. Nat Chem Biol, 2021, 17(7): 817-27.
[2] RAMAKRISHNAN P, TABOR J J. Repurposing Synechocystis PCC6803 UirS-UirR as a UV-Violet/Green Photoreversible Transcriptional Regulatory Tool in E. coli [J]. ACS Synth Biol, 2016, 5(7): 733-40.
[3] ONG N T, TABOR J J. A Miniaturized Escherichia coli Green Light Sensor with High Dynamic Range [J]. Chembiochem, 2018, 19(12): 1255-8.
[4] OHLENDORF R, VIDAVSKI R R, ELDAR A, et al. From dusk till dawn: one-plasmid systems for light-regulated gene expression [J]. J Mol Biol, 2012, 416(4): 534-42.