Difference between revisions of "Part:BBa K4275002"

m
Line 20: Line 20:
 
===Sequence and Features===
 
===Sequence and Features===
 
<partinfo>BBa_K4275002 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K4275002 SequenceAndFeatures</partinfo>
 +
 +
 +
===References===
 +
 +
1.Chen, Hsin-Liang et al. "A Highly Efficient Β-Glucosidase From The Buffalo Rumen Fungus Neocallimastix Patriciarum W5". Biotechnology For Biofuels, vol 5, no. 1, 2012. Springer Science And Business Media LLC, https://doi.org/10.1186/1754-6834-5-24.
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  

Revision as of 09:53, 12 October 2022


NpaBGS-t

NpaBGS-t is fused with type I dokerin to enable the cellulase to interact with type I cohesin on Cipa2B9C scaffold and displayed on cellulosome complex. This type I dokerin-cohesin interaction is an extremely strong non-covalent interaction between molecules that stabilizes the structure of cellulosome. NpaBGS-t would act collectively with two other cellulases: an endoglucanase called TrEGIII-t and an exoglucanase called CBHII-t.

Beta-glucosidase is involved in the catalyzing the hydrolytic degradation of plant polysaccharide cellulose. In cellulose degradation, endoglucanase randomly cuts the beta-1,4-glycosidic bonds along cellulose chains, producing cellulose fragments of various length. Exoglucanase then acts on either reducing or non-reducing ends of cellulose to free cellobiose molecules. Beta-glucosidase functions by converting cellobiose and oligosaccharides into glucose. As cellobiose is a strong allosteric inhibitor for the activity of both endo-beta-1,4-glucanase and cellodextrinase, beta-glucosidase plays an essential role in enhancing the efficiency of cellulose degradation.


GreatBay SCIE--3D NpaBGS-t.png

Figure 1 The 3D structure of the protein predicted by Alphafold2.

Usage and Biology

NpaBGS is cDNA coding beta-glucosidase isolated from buffalo rumen fungus Neocallimastix patriciarum W5.

NpaBGS has 776 amino acid residues with a molecular mass of 85.1 kDa. Beta-glucosidase genes are commonly placed into glycosyl hydrolase families 1 and 3 (GH1 and GH3). NpaBGS is considered a beta-glucosidase of GH3 carrying two conserved putative domain - a GH3 N-terminal domain (Pfam00933) and a GH3 C-terminal domain (Pfam01915), located at residues 62 ~270 and 350 ~ 577 respectively. The aspartic acid residue Asp-251 in the conserved domain might be the active site of NpaBGS.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 502
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 1577
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 1074
    Illegal AgeI site found at 88
    Illegal AgeI site found at 106
  • 1000
    COMPATIBLE WITH RFC[1000]


References

1.Chen, Hsin-Liang et al. "A Highly Efficient Β-Glucosidase From The Buffalo Rumen Fungus Neocallimastix Patriciarum W5". Biotechnology For Biofuels, vol 5, no. 1, 2012. Springer Science And Business Media LLC, https://doi.org/10.1186/1754-6834-5-24.