Difference between revisions of "Part:BBa K4156104"
Line 17: | Line 17: | ||
==Lactate (plldR) and pH (pPepT)Induced promoter-controlled effector engineered strain co-incubated with RKO cells== | ==Lactate (plldR) and pH (pPepT)Induced promoter-controlled effector engineered strain co-incubated with RKO cells== | ||
− | + | Fig1 shows the activity of RKO cells after incubation with each strain (OD=0.6, 30 μl, 3 hours) in fresh DMEM medium,normoxic conditions, and it can be seen that the relative viability of RKO cells in the experimental groups with the addition of effector strains in fresh culture medium, except for the plac+HlyE positive control, did not change significantly compared with the WT group. | |
− | + | Fig2 shows the RKO cell activity of each strain after incubation in 3 day DMEM medium, normoxic conditions. It can be concluded that in the 3 day DMEM medium, due to the accumulation of metabolites such as cellular lactate, the lactate promoter and pH promoter were activated in the engineered strains and started to synthesize therapeutic proteins, resulting in a decrease in the relative viability of RKO compared to the WT group, especially in the pLldR+switch+HlyE and pCadC+switch+HlyE groups with the addition of the amplified gene switch. switch+HlyE group with the addition of the amplifying gene switch significantly reduced the RKO relative viability. In contrast, the decrease in RKO relative viability in the pLldR+φ174E+switch+HlyE group and pCadC+φ174E+switch+HlyE group was not significant, probably due to the decrease in the number of bacteria and the decrease in the number of synthesized therapeutic proteins by the addition of lysis genes. | |
<html> | <html> | ||
Line 36: | Line 36: | ||
==Coincubation of different doses of effector engineered strains (OD=0.6) with RKO cells== | ==Coincubation of different doses of effector engineered strains (OD=0.6) with RKO cells== | ||
− | + | Fig3 shows the RKO cell activity after incubation with different doses of plldR and pCadC control effector strains under3 day DMEM medium, normoxic conditions. The RKO cell activity decreased with increasing doses of effector strains. Fig4 shows the RKO cell activity after incubation with different doses of pPepT-controlled effector strains under fresh DMEM medium, anoxic conditions. It can be seen that RKO cell activity decreased with increasing doses of effector strains controlled by hypoxic induced promoters. | |
− | + | ||
<html> | <html> | ||
+ | |||
<figure style="text-align:center;"> | <figure style="text-align:center;"> | ||
<img style="max-width:700px;" src="https://static.igem.wiki/teams/4156/wiki/part/10-3.png" alt="control"> | <img style="max-width:700px;" src="https://static.igem.wiki/teams/4156/wiki/part/10-3.png" alt="control"> | ||
Line 55: | Line 55: | ||
==30 μl effector engineered strains (OD=0.6) were co-incubated with RKO cells for different times== | ==30 μl effector engineered strains (OD=0.6) were co-incubated with RKO cells for different times== | ||
− | + | Fig5 shows the RKO cell activity after incubation of plldR and pCadC control effector strains for different times under 3 day DMEM medium, normoxic conditions. It can be seen that the RKO cell activity decreased with the increase of co-incubation time. From the fig6, it can be obtained that RKO cell activity decreased with increasing incubation time of the effector strains controlled by pPepT under fresh DMEM medium, anoxic conditions. | |
<html> | <html> |
Revision as of 14:28, 10 October 2022
pLldR-TP901
pLldR-TP901 is constructed with L-lactate-sensitive promoter pLldR and serine integrase TP901.
Usage and Biology
pLldR-TP901 consists of a fusion of the lactate-sensitive promoter pLldR and the serine integrase TP901. It will act as a complex regulatory for controlling downstream logic gates and transcription of genes.
Characterization
Lactate (plldR) and pH (pPepT)Induced promoter-controlled effector engineered strain co-incubated with RKO cells
Fig1 shows the activity of RKO cells after incubation with each strain (OD=0.6, 30 μl, 3 hours) in fresh DMEM medium,normoxic conditions, and it can be seen that the relative viability of RKO cells in the experimental groups with the addition of effector strains in fresh culture medium, except for the plac+HlyE positive control, did not change significantly compared with the WT group.
Fig2 shows the RKO cell activity of each strain after incubation in 3 day DMEM medium, normoxic conditions. It can be concluded that in the 3 day DMEM medium, due to the accumulation of metabolites such as cellular lactate, the lactate promoter and pH promoter were activated in the engineered strains and started to synthesize therapeutic proteins, resulting in a decrease in the relative viability of RKO compared to the WT group, especially in the pLldR+switch+HlyE and pCadC+switch+HlyE groups with the addition of the amplified gene switch. switch+HlyE group with the addition of the amplifying gene switch significantly reduced the RKO relative viability. In contrast, the decrease in RKO relative viability in the pLldR+φ174E+switch+HlyE group and pCadC+φ174E+switch+HlyE group was not significant, probably due to the decrease in the number of bacteria and the decrease in the number of synthesized therapeutic proteins by the addition of lysis genes.
Coincubation of different doses of effector engineered strains (OD=0.6) with RKO cells
Fig3 shows the RKO cell activity after incubation with different doses of plldR and pCadC control effector strains under3 day DMEM medium, normoxic conditions. The RKO cell activity decreased with increasing doses of effector strains. Fig4 shows the RKO cell activity after incubation with different doses of pPepT-controlled effector strains under fresh DMEM medium, anoxic conditions. It can be seen that RKO cell activity decreased with increasing doses of effector strains controlled by hypoxic induced promoters.
30 μl effector engineered strains (OD=0.6) were co-incubated with RKO cells for different times
Fig5 shows the RKO cell activity after incubation of plldR and pCadC control effector strains for different times under 3 day DMEM medium, normoxic conditions. It can be seen that the RKO cell activity decreased with the increase of co-incubation time. From the fig6, it can be obtained that RKO cell activity decreased with increasing incubation time of the effector strains controlled by pPepT under fresh DMEM medium, anoxic conditions.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 7
Illegal NheI site found at 30 - 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 614
Illegal AgeI site found at 2743 - 1000COMPATIBLE WITH RFC[1000]