Difference between revisions of "Part:BBa J61117"

 
Line 26: Line 26:
 
<partinfo>BBa_J61117 parameters</partinfo>
 
<partinfo>BBa_J61117 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
==iGEM 2022 iBowu-China, new documentation (For Bronze)==
 +
<h3><b>Group: iBowu-China iGEM 2022</b></h3>
 +
<h3><b>Author: Enshi Xv</b></h3>
 +
<p>&nbsp;&nbsp;&nbsp;&nbsp; This year, we tested and measured an RBS part.</p>
 +
<p>&nbsp;&nbsp;&nbsp;&nbsp; We constructed the sequences of T7-RBS-GFP, replacing the default rbs sequence on pETDuet vector into this part BBa_J61117.</p>
 +
<p>&nbsp;&nbsp;&nbsp;&nbsp; We first constructed and transformed the sequence into E. coli BL21(DE3) and induced the expression with IPTG overnight. SDS-page results prove the RBS can lead to successful expression of GFP protein. Green color and green florescence can be observed from the bacteria culture.</p>
 +
[[File:Bronze-4.png|600px|thumb|left|Figure 1. The expression test for BBa_J61117]]
 +
    <!-- The end of iBowu-China 2022-->

Latest revision as of 02:22, 9 October 2022

Ribosome Binding Site Family Member

Parts J61100-J61150 are a family of similar ribosome binding site basic parts identified from a saturation mutagenic library.

 Library    TCTAGAGAAAGANNNGANNNACTAGT
 J61100     tctagaGAAAGAGGGGACAAactagt
 J61101     tctagaGAAAGACAGGACCCactagt
 J61102     tctagaGAAAGATCCGATGTactagt
 J61103     tctagaGAAAGATTAGACAAactagt
 J61104     tctagaGAAAGAAGGGACAGactagt
 J61105     tctagaGAAAGACATGACGTactagt
 J61106     tctagaGAAAGATAGGAGACactagt
 J61107     tctagaGAAAGAAGAGACTCactagt
 J61108     tctagaGAAAGACGAGATATactagt
 J61109     tctagaGAAAGACTGGAGACactagt
 J61110     tctagaGAAAGAGGCGAATTactagt
 J61111     tctagaGAAAGAGGCGATACactagt
 J61112     tctagaGAAAGAGGTGACATactagt
 J61113     tctagaGAAAGAGTGGAAAAactagt
 J61114     tctagaGAAAGATGAGAAGAactagt
 J61115     tctagaGAAAGAAGGGATACactagt
 J61116     tctagaGAAAGACATGAGGCactagt
 J61117     tctagaGAAAGACATGAGTTactagt
 J61118     tctagaGAAAGAGACGAATCactagt
 J61119     tctagaGAAAGATTTGATATactagt
 J61120     tctagaGAAAGACGCGAGAAactagt
 J61121     tctagaGAAAGAGACGAGTCactagt
 J61122     tctagaGAAAGAGAGGAGCCactagt
 J61123     tctagaGAAAGAGATGACTAactagt
 J61124     tctagaGAAAGAGCCGACATactagt
 J61125     tctagaGAAAGAGCCGAGTTactagt
 J61126     tctagaGAAAGAGGTGACTCactagt
 J61127     tctagaGAAAGAGTGGAACTactagt
 J61128     tctagaGAAAGATAGGACTCactagt
 J61129     tctagaGAAAGATTGGACGTactagt
 J61130     tctagaGAAAGAAACGACATactagt
 J61131     tctagaGAAAGAACCGAATTactagt
 J61132     tctagaGAAAGACAGGATTAactagt
 J61133     tctagaGAAAGACCCGAGACactagt
 J61134     tctagaGAAAGACCGGAAATactagt
 J61135     tctagaGAAAGACCGGAGACactagt
 J61136     tctagaGAAAGAGCTGAGCAactagt
 J61137     tctagaGAAAGAGTAGATCAactagt
 J61138     tctagaGAAAGATATGAATAactagt
 J61139     tctagaGAAAGATTAGAGTCactagt

These parts are present in plasmid pSB1A2, but there is also a constitutive promoter (J23100-derived) inserted into the XbaI site. So, for example, the EcoRI/PstI region of part J61100 reads:

 Biobrick 5'    XbaI                    J23100              XbaI    RBS Part     Biobrick 3'
 gaattcgcggccgcttctagaGTTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGCTtctagaGAAAGAGGGGACAAactagtagcggccgctgcag

This feature in no way prevents the use of these parts in standard Biobrick assembly. Normal prefix insertion into EcoRI/XbaI will delete this promoter element. Suffix insertion into SpeI/PstI will retain this promoter, but it can of course be removed later by a prefix insertion.

Note also that the base 5' to the SpeI site is allowed to float in these parts and is therefore rarely "T". The "G" downstream of the XbaI site obeys the standard. Because the database does not permit variation at this position, the predicted sequences of composite parts derived from these parts will be incorrect at this position.

More on this family of parts and their quantitative behavior is described here.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Team Warsaw 2010's measurement

RBS strength (relative to B0034): 5,31%


Team TU Delft 2010's measurements

RBS strength: 1.3%, standard deviation: 0.448%
RBS strength is relative to B0034, obtained from an average of 12 measurements. Protein production rate is calculated using our production model


iGEM 2022 iBowu-China, new documentation (For Bronze)

Group: iBowu-China iGEM 2022

Author: Enshi Xv

     This year, we tested and measured an RBS part.

     We constructed the sequences of T7-RBS-GFP, replacing the default rbs sequence on pETDuet vector into this part BBa_J61117.

     We first constructed and transformed the sequence into E. coli BL21(DE3) and induced the expression with IPTG overnight. SDS-page results prove the RBS can lead to successful expression of GFP protein. Green color and green florescence can be observed from the bacteria culture.

Figure 1. The expression test for BBa_J61117