Difference between revisions of "Part:BBa K4268011"

Line 3: Line 3:
 
<partinfo>BBa_K4268011 short</partinfo>
 
<partinfo>BBa_K4268011 short</partinfo>
  
===Design Notes===
+
===Usage and Biology===
The goal of our team's project, Cyanospectre is to create a ghost phage that could be used by synthetic biologists to make genetic engineering of Cyanobacteria easier. We envision that with modification of this virus, it could be used to immobilize target cyanobacteria, or as a viral vector for the delivery of large circuits into a Cyanobacterial chassis.
+
S-TIP37 is a T7-like cyanophage that infects its host via a lytic life cycle (Shitrit et al., 2021). T7-like phages are characterized by a complex symmetrical capsid structure, which includes an icosahedral head that houses the phage's genome, and an internal core region that stabilizes the packaged DNA inside the head. A neck region that facilitates DNA delivery into a host, and six tail fibers used for attachment to its host (Raytcheva et al., 2011).
  
 +
[[File:T--Suny Oneonta-t7-virus-structure.jpg|200px|frame|center|Figure 1: A labeled visual detailing the various structures of a T7-like phage (Kemp et al., 2005)]]
  
We selected a cyanophage, S-TIP37 as the model from which the ghost phage could be built. This phage’s natural host is Synechococcus sp WH8109, a marine Cyanobacteria that has been grown in the lab. We selected this phage based on 1) it has a host that can be grown in the lab, 2) the phage has a relatively small genome making capsid proteins easier to identify, and 3) being a T7-like phage, the structure of its neck region is more simple than that of T4-like phages, making the construction of the ghost phage simpler. We envision that with future modeling, the tail fibers of this ghost phage could be modified to make the virus capable of attaching to and delivering capsid contents to a variety of Salt-water Synechococcus sp strains employed in synthetic biology as chassis, such as Synechococcus sp PCC 11901, UTEX 2973, PCC 7942 or 7002.
+
This part belongs to a collection that codes for a "ghost" phage. This ghost phage is a capsid-only, empty viral shell that could be modified to immobilize Cyanobacteria recognized by the viral tail fibers, or used with modification to deliver substances to a chassis Cyanobacteria.  
----
+
Level 0 parts BBa_R0085, BBa_B0034, BBa_K4268001 (Capsid Assembly Protein), and BBa_B0015 are cloned together to form a Level 1 Transcriptional Unit. According to Type IIS Assembly, there will be 5' to 3' fusion sites between each basic part. However, the sequence provided does not contain these sites.
+
  
===Source===
+
However, it will infect ''Synechococcus sp WH 8109'', the cyanobacteria strain that is the natural host of S-TIP37. Further modeling will be needed to determine if the "ghost" phage could effectively target other strains of Cyanobacteria that are used in synthetic biology, such as ''Synechococcus sp PCC 11901''.
 
+
The source of this sequence is from the S-TIP37 genome (Gene ID 54998404 from the NCBI reference assembly NC_048026.1) (HOT80_gp26 Capsid Assembly Protein [Synechococcus T7-like Phage S-TIP37] - Gene - NCBI, n.d.)
+
 
+
The source of the promoter is a T7 phage Consensus sequence from iGEM's Repository.
+
 
+
===References===
+
The S-TIP37 genome was found on GenomeNet
+
 
----
 
----
U.S. National Library of Medicine. (n.d.). Hot80_gp26 capsid assembly protein [Synechococcus T7-like phage S-tip37] - gene - NCBI. National Center for Biotechnology Information. From https://www.ncbi.nlm.nih.gov/gene/54998403
+
The Capsid Assembly Protein Transcriptional Unit classifies as a Level 1 Transcriptional Unit of Golden Gate Assembly. A strong promoter and RBS were used, BBa_R0085 + BBa_B0034. The terminator used was BBa_B0015.
  
 
<!-- -->
 
<!-- -->
Line 31: Line 23:
 
<partinfo>BBa_K4268011 parameters</partinfo>
 
<partinfo>BBa_K4268011 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
===References===
 +
Shitrit D, Hackl T, Laurenceau R, Raho N, Carlson MCG, Sabehi G, Schwartz DA, Chisholm SW, Lindell D. Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. ISME J. 2022 Feb;16(2):488-499. doi: 10.1038/s41396-021-01085-8. Epub 2021 Aug 24. PMID: 34429521; PMCID: PMC8776855.
 +
 +
Raytcheva DA, Haase-Pettingell C, Piret JM, King JA. Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol. 2011 Mar;85(5):2406-15. doi: 10.1128/JVI.01601-10. Epub 2010 Dec 22. PMID: 21177804; PMCID: PMC3067778.
 +
 +
Kemp P, Garcia LR, Molineux IJ. Changes in bacteriophage T7 virion structure at the initiation of infection. Virology. 2005 Sep 30;340(2):307-17. doi: 10.1016/j.virol.2005.06.039. PMID: 16054667

Revision as of 18:26, 8 October 2022


Capsid Protein with Biotin Tag Transcriptional Unit

Usage and Biology

S-TIP37 is a T7-like cyanophage that infects its host via a lytic life cycle (Shitrit et al., 2021). T7-like phages are characterized by a complex symmetrical capsid structure, which includes an icosahedral head that houses the phage's genome, and an internal core region that stabilizes the packaged DNA inside the head. A neck region that facilitates DNA delivery into a host, and six tail fibers used for attachment to its host (Raytcheva et al., 2011).

Figure 1: A labeled visual detailing the various structures of a T7-like phage (Kemp et al., 2005)

This part belongs to a collection that codes for a "ghost" phage. This ghost phage is a capsid-only, empty viral shell that could be modified to immobilize Cyanobacteria recognized by the viral tail fibers, or used with modification to deliver substances to a chassis Cyanobacteria.

However, it will infect Synechococcus sp WH 8109, the cyanobacteria strain that is the natural host of S-TIP37. Further modeling will be needed to determine if the "ghost" phage could effectively target other strains of Cyanobacteria that are used in synthetic biology, such as Synechococcus sp PCC 11901.


The Capsid Assembly Protein Transcriptional Unit classifies as a Level 1 Transcriptional Unit of Golden Gate Assembly. A strong promoter and RBS were used, BBa_R0085 + BBa_B0034. The terminator used was BBa_B0015.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 731
  • 1000
    COMPATIBLE WITH RFC[1000]


References

Shitrit D, Hackl T, Laurenceau R, Raho N, Carlson MCG, Sabehi G, Schwartz DA, Chisholm SW, Lindell D. Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. ISME J. 2022 Feb;16(2):488-499. doi: 10.1038/s41396-021-01085-8. Epub 2021 Aug 24. PMID: 34429521; PMCID: PMC8776855.

Raytcheva DA, Haase-Pettingell C, Piret JM, King JA. Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol. 2011 Mar;85(5):2406-15. doi: 10.1128/JVI.01601-10. Epub 2010 Dec 22. PMID: 21177804; PMCID: PMC3067778.

Kemp P, Garcia LR, Molineux IJ. Changes in bacteriophage T7 virion structure at the initiation of infection. Virology. 2005 Sep 30;340(2):307-17. doi: 10.1016/j.virol.2005.06.039. PMID: 16054667