Difference between revisions of "Part:BBa K4140018"

(Usage)
(Usage)
Line 5: Line 5:
 
Our aptamer is a single strand DNA with defined and stable tertiary structures that bind to target molecules (phenylalanine) with high affinity and specificity in physiological buffers and fluids and complex biological matrices. Aptamers have made it possible to detect small molecules, including neutral targets, in these environments in sensitive and selective ways.
 
Our aptamer is a single strand DNA with defined and stable tertiary structures that bind to target molecules (phenylalanine) with high affinity and specificity in physiological buffers and fluids and complex biological matrices. Aptamers have made it possible to detect small molecules, including neutral targets, in these environments in sensitive and selective ways.
 
==Usage==
 
==Usage==
Our aptamer is a ssDNA that has a very high recognition specificity,affinity and stable tertiary structures that binds to target molecules (phenylalanine) we used aptamers in our LFA to consume the maximum normal level of phenylalanine in the blood leaving the excess phenylalanine to flow the next line test which contains E-coli with a reporter gene in response to phenylalanine that is above normal level.
+
taking advantage of aptamers properities that has a very high recognition specificity,affinity and stable tertiary structures that binds to target molecules (phenylalanine) we used a ssDNA aptamers in our LFA to consume the maximum normal level of phenylalanine in the blood leaving the excess phenylalanine to flow the next line test which contains E-coli with a reporter gene in response to phenylalanine that is above normal level.
  
 
==Literature Characterization==
 
==Literature Characterization==

Revision as of 10:10, 29 September 2022


Phenylalanine aptamer 1

Our aptamer is a single strand DNA with defined and stable tertiary structures that bind to target molecules (phenylalanine) with high affinity and specificity in physiological buffers and fluids and complex biological matrices. Aptamers have made it possible to detect small molecules, including neutral targets, in these environments in sensitive and selective ways.

Usage

taking advantage of aptamers properities that has a very high recognition specificity,affinity and stable tertiary structures that binds to target molecules (phenylalanine) we used a ssDNA aptamers in our LFA to consume the maximum normal level of phenylalanine in the blood leaving the excess phenylalanine to flow the next line test which contains E-coli with a reporter gene in response to phenylalanine that is above normal level.

Literature Characterization

Figure 1.Substrate RNA cleavage assay using wild-type and mutant target RNAs.





























References

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]