Difference between revisions of "Part:BBa K4083006"
Arsenorazbek (Talk | contribs) |
Arsenorazbek (Talk | contribs) (→Part functionality) |
||
Line 20: | Line 20: | ||
===Part functionality=== | ===Part functionality=== | ||
+ | We used our assembled rhlA primers to extract the <em>nadE</em> gene. (https://parts.igem.org/Part:BBa_K4083019, https://parts.igem.org/Part:BBa_K4083020). Obtained genes were amplified in a PCR machine. Then, these PCR products were analyzed in 2 gel electrophoresis experiments: | ||
+ | https://static.igem.org/mediawiki/parts/0/01/NadE_emphasized.jpg | ||
+ | https://static.igem.org/mediawiki/parts/d/d6/NadE_emphasized1.jpg | ||
+ | |||
+ | <em><strong>Figure 2.</strong> Gel electrophoresis of PCR products.</em> | ||
+ | |||
+ | |||
+ | It can be observed that nadE genes were properly extracted as their bands are located below 1kbp which is near the actual size of the nadE gene (883bp). The smears in each well can result from the high concentration of primers, we learned from our mistake and tried to lower the concentration. | ||
+ | |||
+ | Next, these gels were eluted, and collected genes were inserted into the pRGPDuo2 plasmid. To incorporate nadE genes, we digested plasmids with NheI, SacI, SalI restrictases, and T4 ligase. These plasmids with incorporated nadE gene were electroporated into <em>Pseudomonas putida</em> and <em>Pseudomonas aeruginosa</em>. Unfortunately, due to the lack of time from the COVID-19 situation and late reagents delivery, we were not able to properly insert our genes into <em>P. putida</em>. However, we managed to cultivate <em>P. aeruginosa</em> in kanamycin in LB agar. Then, we extracted these engineered plasmids, and double digested them by SacI and SalI restrictases: | ||
+ | |||
+ | https://static.igem.org/mediawiki/parts/3/3a/NadE%2Bplasmid_emphasized1.jpg | ||
+ | |||
+ | <em><strong>Figure 3.</strong> Gel Electrophoresis of extracted plasmids with genes</em> | ||
+ | |||
+ | |||
+ | In this picture, C well contains pRGPDuo2+<em>nadE</em> which was double digested. The base pair length corresponds to the actual length of pRGPDuo2 and nadE. | ||
===Reference=== | ===Reference=== |
Revision as of 20:27, 21 October 2021
rhlB with SacI and SalI sites
The rhlB gene is responsible for the production of rhamnosyltransferase called RhlB in Pseudomonas aeruginosa.
Usage and Biology
P. aeruginosa is a gram-negative bacillus and opportunistic pathogen. It secretes rhamnolipids - the rhamnose containing glycolipid biosurfactant. These biosurfactants are used by P. aeruginosa to emulsify the oil substances for easy digestion. Thus, rhamnolipids can increase the availability of fats which can be important in many different areas like petroleum, bioremediation, cosmetics, food, agriculture, etc. [1] However, due to the toxicity and infectiousness of P. aeruginosa, other alternative organisms are tested. Currently, genetically engineered Pseudomonas putida has more promising results than others. P. putida only lacks two enzymes for mono-rhamnolipid production: RhlA and RhlB. These enzymes are encoded by rhlA and rhlB coding regions in rhlAB operon. It was previously thought that rhlA and rhlB forms heterodimer, however, further research showed that they act independently from each other [2].
Our team planned to extract rhLA and rhlB genes from P.aeruginosa and to insert them into pRGPDuo2 plasmid obtained from Gauttam, R. [3] We developed the new approach to increase the P. putida's rhamnolipid synthesis by adding nadE gene which encodes NAD synthetase. This way, we hoped to see more rhamnolipid production in engineered P. putida.
The rhamnosyltransferase B (RhlB) catalyzes the reaction between 3-(3-hydroxyalkanoyloxy)alkanoic acid and dTDP-L-rhamnose which forms mono-rhamnolipid [1].
Figure 1. RhlA and RhlB metabolic pathway
Part functionality
We used our assembled rhlA primers to extract the nadE gene. (https://parts.igem.org/Part:BBa_K4083019, https://parts.igem.org/Part:BBa_K4083020). Obtained genes were amplified in a PCR machine. Then, these PCR products were analyzed in 2 gel electrophoresis experiments:
Figure 2. Gel electrophoresis of PCR products.
It can be observed that nadE genes were properly extracted as their bands are located below 1kbp which is near the actual size of the nadE gene (883bp). The smears in each well can result from the high concentration of primers, we learned from our mistake and tried to lower the concentration.
Next, these gels were eluted, and collected genes were inserted into the pRGPDuo2 plasmid. To incorporate nadE genes, we digested plasmids with NheI, SacI, SalI restrictases, and T4 ligase. These plasmids with incorporated nadE gene were electroporated into Pseudomonas putida and Pseudomonas aeruginosa. Unfortunately, due to the lack of time from the COVID-19 situation and late reagents delivery, we were not able to properly insert our genes into P. putida. However, we managed to cultivate P. aeruginosa in kanamycin in LB agar. Then, we extracted these engineered plasmids, and double digested them by SacI and SalI restrictases:
Figure 3. Gel Electrophoresis of extracted plasmids with genes
In this picture, C well contains pRGPDuo2+nadE which was double digested. The base pair length corresponds to the actual length of pRGPDuo2 and nadE.
Reference
[1] Chong, H., & Li, Q. (2017, August 5). Microbial production of rhamnolipids: opportunities, challenges and strategies. Microbial Cell Factories. https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-017-0753-2
[2] Wittgens, A., Kovacic, F., Müller, M. M., Gerlitzki, M., Santiago-Schübel, B., Hofmann, D., Tiso, T., Blank, L. M., Henkel, M., Hausmann, R., Syldatk, C., Wilhelm, S., & Rosenau, F. (2016). Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Applied Microbiology and Biotechnology, 101(7), 2865–2878. https://doi.org/10.1007/s00253-016-8041-3
[3] Gauttam, R., Mukhopadhyay, A., & Singer, S. W. (2020). Construction of a novel dual-inducible duet-expression system for gene (over)expression in Pseudomonas putida. Plasmid, 110. https://doi.org/10.1016/j.plasmid.2020.102514
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 1172
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 65
Illegal NgoMIV site found at 786
Illegal NgoMIV site found at 899 - 1000COMPATIBLE WITH RFC[1000]