Difference between revisions of "Part:BBa K3777022"

Line 8: Line 8:
 
<!-- Add more about the biology of this part here-->
 
<!-- Add more about the biology of this part here-->
 
<b><font size="3">Usage and Biology</font></b>
 
<b><font size="3">Usage and Biology</font></b>
<br>The genetic circuit was composed of a coding sequence of  erythromycin repressor which was inserted into an expression vectors with a consitive promoter(BBa_J23114) and RBS(BBa_K3777030), as well as sfGFP(BBa_K2762017) under the control of T7 promoter (BBa_K3777006).  The terminator we used were BBa_B0010 and BBa_M36305.(Fig 1)
+
<br>The genetic circuit was composed of a coding sequence of  erythromycin repressor and ermc genes which was inserted into an expression vectors with a consitive promoter(BBa_J23114) and RBS(BBa_K3777030), as well as sfGFP(BBa_K2762017) under the control of T7 promoter (BBa_K3777006).  The terminator we used were BBa_B0010 and BBa_M36305.(Fig 1)
 
<br>When tet was absent, TetR would bind to the inducible promoter(PI)and prevent RNA polymerase from initiating transcription, thus repressing the expression of reporter gene. If tet was present, TetR would no longer able to bind to the promoter, resulting in the expression of reporter gene.
 
<br>When tet was absent, TetR would bind to the inducible promoter(PI)and prevent RNA polymerase from initiating transcription, thus repressing the expression of reporter gene. If tet was present, TetR would no longer able to bind to the promoter, resulting in the expression of reporter gene.
 
<br>We expressed this circuit in the <i>E. coli </i> BL21(DE3) cells for tetracycline detection. Thus we could roughly deduce the concentration of the antibiotics in the sample according to the fluorescence intensity.  
 
<br>We expressed this circuit in the <i>E. coli </i> BL21(DE3) cells for tetracycline detection. Thus we could roughly deduce the concentration of the antibiotics in the sample according to the fluorescence intensity.  

Revision as of 12:22, 21 October 2021


mphR-ermC-T7(mphO)-sfGFP

Basic biosensor device for erythromycin detection.

Usage and Biology
The genetic circuit was composed of a coding sequence of erythromycin repressor and ermc genes which was inserted into an expression vectors with a consitive promoter(BBa_J23114) and RBS(BBa_K3777030), as well as sfGFP(BBa_K2762017) under the control of T7 promoter (BBa_K3777006). The terminator we used were BBa_B0010 and BBa_M36305.(Fig 1)
When tet was absent, TetR would bind to the inducible promoter(PI)and prevent RNA polymerase from initiating transcription, thus repressing the expression of reporter gene. If tet was present, TetR would no longer able to bind to the promoter, resulting in the expression of reporter gene.
We expressed this circuit in the E. coli BL21(DE3) cells for tetracycline detection. Thus we could roughly deduce the concentration of the antibiotics in the sample according to the fluorescence intensity. 799px-Tetr-tetO-3WJdB.PNG
Fig.1 Schematic overview of the genetic circuit.
Results
To verify the functionality of the biosensor, we performed a plate-reader experiment and measured optical density and fluorescence intensity every hour. We observed a correlation between concentration of antibiotics in the sample and intensity of fluorescent signal.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 7
    Illegal NheI site found at 30
    Illegal NheI site found at 569
    Illegal NheI site found at 2325
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 463
    Illegal XhoI site found at 114
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 1745
  • 1000
    COMPATIBLE WITH RFC[1000]