Difference between revisions of "Part:BBa K3725022"

Line 8: Line 8:
 
<br>
 
<br>
 
<b>Description</b>
 
<b>Description</b>
 +
<br>
 
Toehold biosensors, which are composed of a switch and trigger, are highly orthogonal riboregulators that activate translation in response to a specific RNA sequence. The switch is composed of a hairpin loop structure that represses translation through its complementary bases in between the ribosomal binding site and the start codon, which is followed by a linker sequence. Once the toehold is exposed to the trigger sequence, the complementary base pairs on the trigger will bind to the toehold, which exposes the ribosomal binding site. RNA polymerase can then bind to the RBS and initiate translation of the reporter protein.
 
Toehold biosensors, which are composed of a switch and trigger, are highly orthogonal riboregulators that activate translation in response to a specific RNA sequence. The switch is composed of a hairpin loop structure that represses translation through its complementary bases in between the ribosomal binding site and the start codon, which is followed by a linker sequence. Once the toehold is exposed to the trigger sequence, the complementary base pairs on the trigger will bind to the toehold, which exposes the ribosomal binding site. RNA polymerase can then bind to the RBS and initiate translation of the reporter protein.
  

Revision as of 03:21, 21 October 2021


Improved Fusarium Toehold w/ GFP Reporter
Overview
The Improved Fusarium Toehold w/ GFP Reporter part, is designed to be used in conjunction with the T7 F. oxysporum f.sp. lycopersici trigger in order to express GFP as a part of the engineered toehold switch system. The described structure was designed using NUPACK (Nucleic Acid Package) software’s Design feature. This was done by finding a unique gene of the F. oxysporum species that encodes for pathogenicity: the FRP1 gene. After inputting the FRP1 gene sequence into the NUPACK software using an input code given by Takashi et. al., pairs of trigger sequences and switch sequences were outputted. The trigger sequences given were 36 base-pair long sequences from the FRP1 gene, and the switch sequences given were reverse complementary to the trigger sequences. The pairs were ordered by normalized ensemble defect. The Improved Fusarium Toehold w/ GFP reporter was the generated pair with the second-lowest normalized ensemble defect. We ordered the insert in a pUCIDT Amp plasmid from Integrated DNA Technologies
Description
Toehold biosensors, which are composed of a switch and trigger, are highly orthogonal riboregulators that activate translation in response to a specific RNA sequence. The switch is composed of a hairpin loop structure that represses translation through its complementary bases in between the ribosomal binding site and the start codon, which is followed by a linker sequence. Once the toehold is exposed to the trigger sequence, the complementary base pairs on the trigger will bind to the toehold, which exposes the ribosomal binding site. RNA polymerase can then bind to the RBS and initiate translation of the reporter protein.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 861
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 777